
A Modern Perspective on Safe Automated Driving for Different Traffic
Dynamics using Constrained Reinforcement Learning

Danial Kamran∗1, Thiago D. Simão∗2, Qisong Yang3,
Canmanie T. Ponnambalam3, Johannes Fischer1, Matthijs T. J. Spaan3 and Martin Lauer1

Abstract— The use of reinforcement learning (RL) in real-
world domains often requires extensive effort to ensure safe
behavior. While this compromises the autonomy of the system,
it might still be too risky to allow a learning agent to freely
explore its environment. These strict impositions come at the
cost of flexibility and applying them often relies on complex
parameters and hard-coded knowledge modelled by the reward
function. Autonomous driving is one such domain that could
greatly benefit from more efficient and verifiable methods for
safe automation. We propose to approach the automated driving
problem using constrained RL, a method that automates the
trade off between risk and utility, thereby significantly reducing
the burden on the designer. We first show that an engineered
reward function for ensuring safety and utility in one specific
environment might not result in the optimal behavior when
traffic dynamics changes in the exact environment. Next we
show how algorithms based on constrained RL which are
more robust to the environmental disturbances can address
this challenge. These algorithms use a simple and easy to
interpret reward and cost function, and are able to maintain
both, efficiency and safety without requiring reward parameter
tuning. We demonstrate our approach in the automated merg-
ing scenario with different traffic configurations such as low
or high chance of cooperative drivers and different cooperative
driving strategies.

I. INTRODUCTION

Reinforcement learning (RL) promises to produce agents
that learn to optimize decision-making problems with limited
to no knowledge of the environment. This makes it an attrac-
tive approach to automating complex and high-dimensional
tasks. The drawback is that RL agents must interact with
the environment, exhaustively taking both good and bad
actions, in order to learn the best long-term decisions. In
real-world and safety-critical domains such as driving, where
the consequences of taking bad actions are severe, which
diminishes the appeal of classical RL. An ideal response
to this problem is safe reinforcement learning, a class of
RL methods that guarantees safety during learning or upon
execution. Safe RL methods have recently been applied
to various automated driving problems with some success
[1]–[6]. Existing safe RL approaches to autonomous driving
require extensive designer knowledge coded into the solution.
In many cases, these methods impose a heavy burden on the

*Authors have equal contribution.
1Karlsruhe Institute of Technology, Germany {danial.kamran,

johannes.fischer, martin.lauer}@kit.edu
2Radboud University, Nijmegen, The Netherlands

thiago.simao@ru.nl
3Delft University of Technology, The Netherlands {q.yang,

c.t.ponnambalam, m.t.j.spaan}@tudelft.nl

Policy
Training

Safe PolicySafety
Constraint

Policy
 Training

Constraint
 Satisfied?

Safety
Constraint

Yes

No

Safe Policy

Normal RL

Constrained RL

Reward
Tuning

Fig. 1. Two structures for learning safe policies. In normal RL, the user
searches for the best reward function that produces a policy that satisfies the
required constraint. In constrained RL, the algorithm design is simplified as
the safety constraint will automatically be satisfied during training.

designer to identify unsafe states or actions, tune hyperpa-
rameters, or define complex reward functions [3], [5], [7], as
Figure 1 illustrates. In addition to the issue of extensive prior
knowledge needed, these methods can be overly conservative
as they often impose hard restrictions on the search space.
Instead, we propose constrained reinforcement learning as an
elegant approach to safety in the automated vehicle domain.
Constrained RL models the problem as a constrained Markov
decision process (CMDP), introducing a cost function to
encode safety-relevant information (such as whether a crash
has occurred). This clearly separates the specification of
reward (to be maximized) and cost (to be minimized).
The constraint is then defined as a threshold regarding the
acceptable expected cost, resulting in a simple and highly
interpretable parameter. The agent learns to optimize reward
while respecting this safety constraint, automatically tuning
the trade-off between the two conflicting goals.

Merging into a highway with dense traffic is a challenging
task for automated vehicles. The dense traffic means that the
window in which a successful merge can occur is small.
The position and interaction between other vehicles in the
environment is a crucial aspect of the state description that
determines when a merge can be successfully executed. This
complex state space makes it particularly challenging to
define a set of safe states or actions by hand, and manipu-
lating the reward function to include safety considerations is
difficult and requires considerable tuning. Further, applying
a safe RL method that is overly conservative in this scenario

2022 IEEE 25th International Conference on Intelligent Transportation Systems (ITSC)
October 8-12, 2022, Macau, China

978-1-6654-6880-0/22/$31.00 ©2022 IEEE 4017

20
22

 IE
EE

 2
5t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 In
te

lli
ge

nt
 T

ra
ns

po
rt

at
io

n
Sy

st
em

s (
IT

SC
) |

 9
78

-1
-6

65
4-

68
80

-0
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IT

SC
55

14
0.

20
22

.9
92

19
07

Authorized licensed use limited to: Radboud University Nijmegen. Downloaded on November 09,2022 at 09:32:20 UTC from IEEE Xplore. Restrictions apply.

can result in the freezing robot problem, whereby the vehicle
is unable to merge at all. This makes the highway merge
problem a prime candidate for a constrained RL approach.

In this paper, we first describe existing safe RL approaches
to the automated driving problem, and highlight recent work
with similar goals to our approach as well as their limitations.
We then formulate the dense highway merge scenario as a
constrained MDP and apply two constrained RL methods to
a traditional safe approach to this problem. The experiments
demonstrate how constrained RL successfully mitigates the
trade-off between merging as quickly as possible and avoid-
ing crashes without additional hyper-parameters or extensive
tuning.

II. RELATED WORK

The field of safe reinforcement learning (RL) encompasses
several different types of approaches with varying levels
of safety guarantees, of which formulating the problem as
a constrained Markov decision process (as we propose) is
only a sub-set. For a comprehensive overview of safe RL in
general, we refer the reader to [8].

In this work, we focus on methods situated in the auto-
mated driving domain that aim to adhere to safe behavior
either during learning or on execution of the trained agent.
The most relevant methods can be divided into two cate-
gories: those that encode safety in the reward function, and
those that shield unsafe actions from the agent.

A popular approach to safe RL is to include penalties
in the reward function that discourages unsafe behavior, an
indirect way to incorporate safety [1], [5], [6], [9]. These
methods lay the burden of specifying unsafe behavior on the
designer, resulting in reward functions that can be hard to
specify and even more difficult to verify. A more explicit way
to produce safe behavior is to restrict the action space to safe
actions, often referred to as shielding [10]–[12]. Determining
unsafe actions can be done using, for example, a model
checker [3] or predictive model [4], [7]. Efforts have been
made to combine the two types of approaches, with one using
a parameterized reward penalty to restrict actions determined
to be unsafe [13]. In general, restricting the search space can
produce conservative behavior, as they enforce hard limits
on the space of acceptable policies. Further, such methods
are very sensitive to incorrect specifications or predictions of
unsafe actions.

The use of constrained RL in the autonomous vehicle
domain has been so far limited. In one paper, they used
LTL specifications to define unsafe states, referring to the
result as a constrained optimization problem [14]. However,
this decoupled approach does not attempt to balance reward
and safety, instead enforcing hard constraints on the search
space. A budgeted MDP, which is similar to a constrained
MDP, but offers additional control over the budget, has
also been used to model the problem of automated driving
[15]. Most recently, constrained RL has been evaluated
on lane keeping and intersection navigation tasks, where
a parallel learning approach was proposed that employs
multiple agents to speed up convergence [16]. Our paper

highlights the limitations of reinforcement learning that are
addressed by taking a constrained optimization approach. We
focus on the improvements provided in terms of the ease of
specification, robustness to scalarization issues, and elegant
trade-off of reward and risk, evaluated on a dense highway
merge scenario.

III. BACKGROUND

In this section, we formalize the definition of constrained
RL, and present the algorithms that are used to solve it.

A. Constrained Markov Decision Process

A CMDP [17] is a model that separates reward and safety
signals. Similar to a Markov decision process (MDP) [18], a
CMDP is a tuple, (S,A,P, ι, r, c, d, γ), where S is the state
space, A is the set of actions, P : S × A × S → [0, 1] is
a transition kernel indicating the probability to state s′ after
taking action a in state s, ι is the initial state distribution,
r : S×A → [rmin, rmax] is the reward function, c : S×A →
[cmin, cmax] is the cost function, d is the safety threshold,
and γ ∈ [0, 1] is the discount factor.

As in an MDP the goal in a CMDP is to compute a policy
that maximizes the accumulated discounted reward

max
π

JR(π)
.
= E

(st,at)∼Tπ

[∞∑
t=0

γtr(st, at)

]
. (1)

where Tπ = (s0, a0, s1, . . .) is the trajectory distribution
induced by s0 ∼ ι, at ∼ π(·|st), and st+1 ∼ P(· |st, at).
Additionally, the optimal policy has to keep the expected
accumulated discounted cost bounded

JC(π)
.
= E

(st,at)∼Tπ

[∞∑
t=0

γtc(st, at)

]
≤ d (2)

according to the predefined safety threshold d. Depending
on the task, it might resemble a bound on the probability
of failure, for instance if c(s, a) = 1failure(s), although this
requires γ = 1. An MDP can be seen as an unbounded
CMDP, setting d = ∞, which essentially allows to ignore the
cost function, obtaining the following MDP (S,A,P, ι, r, γ).

B. Constrained Reinforcement Learning

Constrained RL addresses the problem of solving an
unknown CMDP [19]. Although off-policy methods for
constrained RL have been proposed [20]–[22], this paper
focuses on on-policy variants. Specifically, we apply PPO-
Lagrangian [23] and Constrained Policy Optimization (CPO)
[24] to the automated driving domain. These methods repre-
sent two main directions in on-policy constrained RL. The
first direction is to adapt RL algorithms to their Lagrangian
variants, as seen in TRPO-Lagrangian and PPO-Lagrangian
[23]. The second direction uses constrained policy optimiza-
tion methods [25], [26] built on the work of [24].

4018

Authorized licensed use limited to: Radboud University Nijmegen. Downloaded on November 09,2022 at 09:32:20 UTC from IEEE Xplore. Restrictions apply.

a) PPO-Lagrangian: Proximal policy optimization
(PPO) [27], designed for regular RL problems, not only re-
tains the benefits of trust region policy optimization (TRPO)
[28], but also has better sample complexity and convenience
to implement. Constrained optimization problems can be
solved by a Lagrangian variant of PPO [23], [29]. Instead
of fixing the value of the Lagrangian multiplier, we adapt
it based on the constraint-satisfying performance. When the
policy is unsafe, we increase the Lagrangian multiplier to
enhance safety, but decrease it when attaining safe perfor-
mance. This allows us to leverage an adaptive safety weight λ
in the constrained optimization problem:

max
π

min
λ≥0

G(π, λ) .
= f(π)− λg(π), (3)

where f(π) = JR(π) and g(π) = JC(π)− d in the case of
Equations (1) and (2). So, we update the safety weight using

λk+1 = max(0, λk + αλ(J
C(π)− d)), (4)

where αλ is the penalty learning rate. In our experiments,
we use the undiscounted cumulative cost to measure the real
constraint satisfaction.

b) Constrained Policy Optimization (CPO): CPO is a
trust-region method for constrained RL with guarantees for
near-constraint satisfaction at each iteration [24]. At each
gradient step, CPO constrains the policy changes to the cost
constraint and divergence neighborhood while guaranteeing
reward improvement. Similar to TRPO, Equations (1) and (2)
are further constrained to an additional Kullback-Leibler
(KL) divergence constraint:

πk+1 = argmax
π

E
s∼Tπk
a∼π

[Aπk

R (s, a)]

s.t. JC(πk) +
1

1− γ
E

s∼Tπk
a∼π

[Aπk

C (s, a)] ≤ d

E
s∼Tπk

[DKL(π||πk)[s]] ≤ δ

(5)

where δ is the maximum step size, DKL is the KL
divergence to indicate the trust region. The advantage
functions AR and AC , respectively, express the per-
formance change Es∼Tπk

,a∼π [A
πk

R (s, a)] (in reward) and
Es∼Tπk

,a∼π [A
πk

C (s, a)] (in cost) of policy π over the current
policy πk. After the transition from Equations (1) and (2) to
Equation (5), CPO further approximates the reward function
and constraints using linear approximation (first and second
order expansions) for small step sizes δ, to ensure the
problem is solvable. We refer the reader to [24] for more
details on the CPO algorithm.

IV. AUTONOMOUS DRIVING AS AN MDP

We formulate the automated driving problem as a Markov
decision process (MDP), where at every decision step t, the
decision making policy π chooses the best action. The overall
goal is to learn the actions that maximize the expected future
reward (return) at every time step. In this paper, we focus
on merging in a highway environment where the ego vehicle
is a reinforcement learning agent that observes the positions

Fig. 2. Example of a merging scenario and the features that make up the
observation of the reinforcement learning agent. Here the ego vehicle (blue)
has to prevent collisions with vehicles on the main lane and also drive as
fast as possible to reach the goal.

and velocities of the surrounding vehicles and controls its
acceleration. The aim is to avoid collisions during merging
without acting too conservative. To this end, we model the
merging scenario depicted in Figure 2 and define the input
state as

st =
de dgoal d1 ... dn
ve ae v1 ... vn

 , (6)

where de is the ego vehicle’s distance to the conflict merging
area, dgoal is the distance from the conflict area to the
goal, and ve and ae are the velocity and acceleration of the
ego vehicle, respectively. We also include relative distances
and velocities between vehicles on the main lane and the
projection of the ego vehicle to the main lane as di and vi
for a maximum of N = 15 surrounding vehicles in the state,
as shown in Figure 2.

The policy maps a state to an action at from the discrete
action space A = {Decelerate, Idle,Accelerate} that controls
the ego vehicle behavior during merging by sending high-
level commands to a low-level speed controller.

Some of the key performance metrics we consider in this
domain include:

risk(st, at) =

{
ccollision, if collision,
0, otherwise.

(7)

utility(st, at) =

{
csuccess, if success,
−ctime, otherwise.

(8)

In some works, the time penalty ctime is not used. Instead,
discounting future rewards with γ < 1 also encourages faster
driving.

In order to learn the desired behavior, both safety and
utility must be considered, as the two most important aspects
for automated driving. It is preferred to learn policies that
are safe, thus preventing collisions with other vehicles, while
also acting efficiently, thereby exhibiting behavior that is not
too conservative.

A. Penalty-based safety

Traditionally, such desired behavior is encoded in the
reward function using a combination of these components
and adjusting their parameters to increase speed or enforcing

4019

Authorized licensed use limited to: Radboud University Nijmegen. Downloaded on November 09,2022 at 09:32:20 UTC from IEEE Xplore. Restrictions apply.

time penalties that encourage faster driving, while at the same
time employing high collision penalties to encourage safe
driving [1]–[6]. The resulting reward function is given as

r(st, at) = utility(st, at)− λ risk(st, at), (9)

where λ is the safety weight, which is responsible to balance
between utility and safety.

In this case, assuming the values ccollision, ctime and csuccess
are already defined, the user must choose an appropriate
safety weight λ. Notice however, that the appropriate value
for λ depends on the structure of the reward function, in
other words, for different values of ccollision, ctime and csuccess,
the appropriate safety weight λ could change significantly.

V. AUTONOMOUS DRIVING AS A CMDP
In order to overcome the hyper-parameter sensitivity of

such a complex reward function, which is especially im-
portant in safety-related applications like automated driving,
we propose to instead use constrained RL and formulate
safety explicitly in a cost function. In this way, the RL agent
automatically satisfies safety constraints identified as cost
limits of the policy without requiring any parameter tuning
in the reward function. We define the following reward and
cost function for our highway merging scenario

r(st, at) = utility(st, at), (10)
c(st, at) = risk(st, at). (11)

Now, when the user of this system trains a policy to drive
safely, she only needs to define the cost limit d, removing
the burden of choosing an appropriate balance between utility
and risk, represented by the value λ.

a) The trade-off between safety and utility: In a con-
ventional reward scheme, safety and utility are considered
simultaneously in the return, implying that at some points
the RL agent may sacrifice safety to reach higher reward
or alternatively become too conservative due to large safety
punishments. This trade-off is often tuned based on the ccollision

ctime

or ccollision
csuccess

ratio in the reward function. However, this leads to
two main issues: hyper-parameter sensitivity and environ-
ment over-fitting. After small changes in the environment
configuration (like more dense traffic or higher average speed
of vehicles) the reward function may not lead to the desired
behavior anymore and a new reward parameter tuning needs
be applied and the agent needs to be retrained with a new
rewarding scheme.

We propose to consider safety as the cost of policy and
decouple it from other factors in the desired behavior of the
RL agent by leveraging constrained RL. We can then enforce
safety by setting a suitable cost limit d which is a meaningful
parameter, in our case specifying the average number of
safety violations of the policy, without the requirement of
again tuning the parameters of the reward function.

We may notice that other objectives, such as comfort,
compliance with traffic rules or fuel consumption, could also
be defined as separate constraints. This makes the goals
easier to interpret and avoids a highly complex scalarized
reward function.

Reward engineering can also become easier with this ap-
proach. Consider for instance the task of choosing the values
for ctime and csuccess. On the one hand, if ctime > csuccess, a
regular RL agent might choose to crash in order to avoid
getting time penalties, ignoring the reward for completing a
task. On the other hand, a constrained RL would still have
a reasonable behavior due to the safety constraints.

VI. EXPERIMENTAL ANALYSIS

In this section we empirically evaluate the two ways we
may tackle the automated driving task with normal reinforce-
ment learning and constrained reinforcement learning. The
goal is to validate the hypothesis that training a safe and high
performing policy using constrained RL is easier from the
user perspective than using regular RL.

A. Experimental Set-Up

For our evaluations we use the highway-env framework,
which provides environments for tactical decision-making in
different automated driving tasks [30]. In this framework, the
RL agent controls the ego vehicle, while the other vehicles
follow an Intelligent Driver Model (IDM) [31] and only
react to the ego vehicle once it enters their lane. At the
beginning of each episode, some vehicles with probability
of pcoop will be cooperative which consider the projected
position of the ego-vehicle on their lane as the front vehicle
position and open a merging gap for the ego vehicle with dif-
ferent comfortable deceleration limit in their IDM controller
(acomf-max). In order to simulate different traffic dynamics,
we implement three different environments for the automated
merging scenario:

• Low Cooperative: Low chance of having cooperative
drivers with pcoop=0.3 and early cooperative brake with
acomf-max=1.0 m/s2

• High Cooperative: High chance of having cooperative
drivers with pcoop=0.6 and early cooperative brake with
acomf-max=1.0 m/s2

• Low Cooperative with Late Brake: Low chance of
having cooperative drivers with pcoop=0.3 and late co-
operative brake with acomf-max=5.0 m/s2

1) Baselines: We consider three different RL agents in
order to solve each merging scenario: Normal PPO with
multiple collision penalties, PPO-Lagrangian with multiple
cost limits (we set αλ = 0.05 and update the penalty 40
times per epoch; the remaining hyperparameters are the same
as for PPO), and CPO also using multiple cost limits.

2) Metrics: We evaluate the average episode cost (Av-
erageEpCost), which is the expected accumulated cost of a
trajectory and the episode length (EpLen), which indicates
how fast the policy can finish one episode. Hence, in all the
plots lower values are better.

B. Results

1) Ease of use: As we discussed in Section IV and
Section V, finding the appropriate value to balance between
utility and safety can be a challenge. Figure 3 shows the per-
formance of the different algorithms on the Low Cooperative

4020

Authorized licensed use limited to: Radboud University Nijmegen. Downloaded on November 09,2022 at 09:32:20 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. Training results for PPO with different safety weights (left), PPO-Lagrangian with different cost limits (middle) and CPO algorithm with different
cost limits (right). The grey dashed lines indicate the cost limits.

environment using different values for the safety weight λ (in
case of PPO) and safety bound d (in case of PPO-Lagrangian
and CPO). On the one hand, we notice that equipping PPO
with a λ too low, such as 5, can lead to extremely unsafe
policies, while setting it to 20 or 100 provide safer policies.
On the other hand, the constrained methods can find safe
policies. It is easy to see that PPO-Lagrangian is approaching
the desired safety bound. This experiment makes clear that
from the user’s perspective choosing a value for d is much
more meaningful than choosing a value for λ, since there
is an obvious connection between the safety bound d and
the safety level of the policy returned. Consider for instance
that the user is willing to allow an expected cost of 0.1, after
observing the results from PPO with 3 different values for
λ on Figure 3, it is not clear what should be the value of λ
in that case.

Considering the results for PPO with λ = 5, we may
conclude that setting ctime = 0.1 and csuccess = 1 encourages
the agent to terminate the episode as soon as possible leading
to more crashes, making it mandatory to set λ = 5. On the
other hand, we notice that the constrained agents manage to
reduce the number of collisions, almost independently of the
cost limit.

2) Safety satisfaction: Although both, PPO-Lagrangian
and CPO, try to learn safe policies, according to Figure 3,
PPO-Lagrangian is more successful to satisfy the specified
cost limit d in its configuration. This suggests that based
on the desired safety requirement, one can directly specify

the required cost limit for a PPO-Lagrangian agent before
training without the necessity to tune the reward function
for safety satisfaction.

3) Evaluations on Different Traffic Dynamics: In tra-
ditional RL, the reward function needs to be specialized
for every new environment with different configuration. In
order to study if constrained RL can address this challenge,
we trained PPO agents with different collision penalties
(λ) in their reward function in environments with different
traffic dynamics. After training, we evaluated each trained
policy for 100 episodes in the configured environment and
compared the collision rate and average episode time of each
agent in Table I and Table II. The first conclusion from these
results is that the PPO agent requires specialized collision
penalty in order to learn safe behavior for each environment.
For the High Cooperative environment, all PPO agents have
collision rates below 5% while for the Low Cooperative
agent the PPO with λ=0.1 has 14% collision rate. Moreover,
in the Low Cooperative with Late Brake environment (as
the most challenging configuration) only PPO agents with
λ ≥ 5 have collision rates below 5%. Next we trained
the PPO-Lagrangian as a constrained RL agent in the three
environments and compared its evaluations with the PPO
agent. It is visible that the PPO-Lagrangian agent could learn
policies with collision rates below 5% for all of the three
environments with fixed parameters in the reward and cost
functions (d=0.01 and αλ=0.1). The important conclusion is
that the PPO-Lagrangian algorithm is not sensitive to the

4021

Authorized licensed use limited to: Radboud University Nijmegen. Downloaded on November 09,2022 at 09:32:20 UTC from IEEE Xplore. Restrictions apply.

TABLE I
COMPARING BASELINES IN LOW COOPERATIVE AND HIGH COOPERATIVE ENVIRONMENTS.

Env. Config Low Cooperative High Cooperative
Agent PPO PPO-Lag PPO PPO-Lag
λ 0.1 1 2.5 5 10 100 0.1 1 2.5 5 10 100
Collision Rate (%) 14 3 4.5 0.6 2.6 0 3.3 4.6 4.3 1 4.3 2 0 0.33
Avg. Time (s) 48.2 51.1 52.7 59.9 56.8 79.3 56.7 47.5 47.3 49.4 48.1 49.1 60.3 49.1

TABLE II
COMPARING BASELINES IN LATE COOPERATIVE BRAKE ENVIRONMENT.

Env. Config Low Cooperative with Late Brake
Agent PPO PPO-Lag
λ 0.1 1 2.5 5 10 100
Collision Rate (%) 16 14 19.3 3.3 0.1 0 1.3
Avg. Time (s) 47.4 45 47.5 60.6 68.8 78.2 81.9

environment disturbances and therefore the designer can put
less effort for training safe RL policies in automated driving
environments which may have different traffic configurations.

4) Effect of penalty learning rate αλ: We also per-
formed a hyper-parameter analysis for the PPO-Lagrangian’s
penalty learning rate αλ. We considered the values αλ ∈
[0.005, 0.01, 0.05, 0.1, 0.5]. Figure 4 shows that overall the
PPO-Lagrangian algorithm has a low hyper-parameter sen-
sitivity with respect to αλ in terms of safety. That is, for all
learning rates the algorithm is converging to a constraint sat-
isfying policy. We also notice that, αλ has a more significant
impact in the performance during learning, demonstrated by
the average episode length. PPO-Lagrangian finds policies
with lower episode length using lower learning rates (0.01
and 0.005), indicating that the results presented on Figure 3
and Table I and Table II could still be improved, while larger
learning rates can increase the episode length.

5) Video Demonstration: The supplementary video com-
pares the use of different safety penalties for a penalty-based
RL model and constrained RL algorithms. Large penalties
generally lead RL agents to drive safely but overly conser-
vative (slower), while smaller penalties lead to faster driving
but also reckless behavior. We observe that the Lagrangian-
PPO agent learns to balance between safe and fast driving,
a behavior less conservative than an RL agent with large
penalties and also less reckless than an RL agent with small
penalties.

C. Limitations

Notice that constrained RL defines safety in expectation,
which in our application still allows a number of collisions
even after the learning is finished, to mitigate this issues
we could combine such an approach with methods that
enforce hard constraints [10]–[12]. This method also does not
guarantee safety while the agent is still learning, finding ways
to ensure constrained RL satisfies the safety constraints is an
active line of research [32]–[34]. Furthermore, investigating
more sophisticated penalty learning schedules can be applied
in the constrained RL algorithm in order to achieve faster
convergence and even more adaptive policies.

Fig. 4. Training results for the PPO-Lagrangian method using different
penalty learning rates on the Low Cooperative environment with cost limit
d = 0.01, as indicated by the grey dashed line.

VII. CONCLUSION

In this paper, we addressed the challenge of learning
safe and efficient policies in automated driving with RL. In
contrast to traditional RL methods that learn safe policies
by discouraging unsafe outcomes using penalties in the
reward function, we investigate a new perspective on safety
of the learned policies using constrained RL. We showed
the main drawback of the traditional RL algorithms is the
requirement of reward engineering for every specific traffic
configurations (e.g. fewer cooperative drivers or different
cooperative strategies) in order to learn safe policies. The
proposed methodology provides a clear interface for the
designer who only needs to set the desired cost limit for the
policy being learned instead of manually balancing safety
and utility until finding the best policy. In light of our

4022

Authorized licensed use limited to: Radboud University Nijmegen. Downloaded on November 09,2022 at 09:32:20 UTC from IEEE Xplore. Restrictions apply.

experiments, this helps to learn safe and efficient policies
in environments with different traffic dynamics using a fixed
setup for the constrained RL agent.

ACKNOWLEDGMENT

This research is partly accomplished within the project
“UNICARagil” (FKZ 6EMO0287). We acknowledge the
financial support for the project by the Federal Ministry of
Education and Research of Germany (BMBF).

REFERENCES

[1] D. Isele, R. Rahimi, A. Cosgun, K. Subramanian, and K. Fu-
jimura, “Navigating occluded intersections with autonomous
vehicles using deep reinforcement learning,” in ICRA, IEEE,
2018, pp. 2034–2039.

[2] T. Tram, A. Jansson, R. Grönberg, M. Ali, and J. Sjöberg,
“Learning negotiating behavior between cars in intersections
using deep q-learning,” in 2018 21st International Confer-
ence on Intelligent Transportation Systems (ITSC), IEEE,
2018, pp. 3169–3174.

[3] M. Bouton, A. Nakhaei, K. Fujimura, and M. J. Kochender-
fer, “Safe reinforcement learning with scene decomposition
for navigating complex urban environments,” in 2019 IEEE
Intelligent Vehicles Symposium (IV), IEEE, 2019, pp. 1469–
1476.

[4] M. Bouton, A. Nakhaei, D. Isele, K. Fujimura, and M. J.
Kochenderfer, “Reinforcement learning with iterative rea-
soning for merging in dense traffic,” in 2020 IEEE 23rd
International Conference on Intelligent Transportation Sys-
tems (ITSC), 2020, pp. 1–6.

[5] D. Kamran, C. F. Lopez, M. Lauer, and C. Stiller, “Risk-
aware high-level decisions for automated driving at occluded
intersections with reinforcement learning,” in 2020 IEEE
Intelligent Vehicles Symposium (IV), IEEE, 2020, pp. 1205–
1212.

[6] M. Bouton, A. Nakhaei, K. Fujimura, and M. J. Kochender-
fer, “Cooperation-aware reinforcement learning for merging
in dense traffic,” in 2019 IEEE Intelligent Transportation
Systems Conference (ITSC), IEEE, 2019, pp. 3441–3447.

[7] D. Isele, A. Nakhaei, and K. Fujimura, “Safe reinforcement
learning on autonomous vehicles,” in IROS, IEEE, 2018,
pp. 1–6.

[8] J. Garcı́a and F. Fernández, “A comprehensive survey on
safe reinforcement learning,” JMLR, vol. 16, pp. 1437–1480,
2015.

[9] P. Wang, C.-Y. Chan, and A. de La Fortelle, “A reinforce-
ment learning based approach for automated lane change
maneuvers,” in 2018 IEEE Intelligent Vehicles Symposium
(IV), 2018, pp. 1379–1384.

[10] M. Alshiekh, R. Bloem, R. Ehlers, B. Könighofer, S.
Niekum, and U. Topcu, “Safe reinforcement learning via
shielding,” in AAAI, AAAI Press, 2018, pp. 2669–2678.

[11] G. Kalweit, M. Huegle, M. Werling, and J. Boedecker, Deep
Constrained Q-learning, arXiv:2003.09398, 2020.

[12] N. Jansen, B. Könighofer, S. Junges, A. Serban, and R.
Bloem, “Safe reinforcement learning using probabilistic
shields,” in CONCUR, ser. LIPIcs, vol. 171, 2020, 3:1–3:16.

[13] S. Mo, X. Pei, and C. Wu, “Safe reinforcement learning for
autonomous vehicle using monte carlo tree search,” IEEE
Transactions on Intelligent Transportation Systems, pp. 1–8,
2021.

[14] M. Bouton, J. Karlsson, A. Nakhaei, K. Fujimura, M. J.
Kochenderfer, and J. Tumova, “Reinforcement learning with
probabilistic guarantees for autonomous driving,” 2019,
arXiv:1904.07189.

[15] N. Carrara, E. Leurent, R. Laroche, T. Urvoy, O.-A. Mail-
lard, and O. Pietquin, “Budgeted reinforcement learning in
continuous state space,” in NeurIPS, Curran Associates, Inc.,
2019, pp. 9295–9305.

[16] L. Wen, J. Duan, S. E. Li, S. Xu, and H. Peng, “Safe rein-
forcement learning for autonomous vehicles through parallel
constrained policy optimization,” in 23rd IEEE International
Conference on Intelligent Transportation Systems, IEEE,
2020, pp. 1–7.

[17] E. Altman, Constrained Markov Decision Processes. CRC
Press, 1999, vol. 7.

[18] M. L. Puterman, Markov Decision Processes: Discrete
Stochastic Dynamic Programming, 1st. John Wiley & Sons,
Inc., 1994.

[19] L. Brunke, M. Greeff, A. W. Hall, Z. Yuan, S. Zhou, J.
Panerati, et al., “Safe Learning in Robotics: From Learning-
Based Control to Safe Reinforcement Learning,” Annual
Review of Control, Robotics, and Autonomous Systems,
vol. 5, no. 1, pp. 411–444, 2022.

[20] S. Ha, P. Xu, Z. Tan, S. Levine, and J. Tan, Learning
to Walk in the Real World with Minimal Human Effort,
arXiv:2002.08550, 2020.

[21] Q. Yang, T. D. Simão, S. H. Tindemans, and M. T. J.
Spaan, “WCSAC: Worst-Case Soft Actor Critic for Safety-
Constrained Reinforcement Learning,” in AAAI, 2021.

[22] ——, “Safety-constrained reinforcement learning with a
distributional safety critic,” Machine Learning, pp. 1–29,
2022.

[23] A. Ray, J. Achiam, and D. Amodei, Benchmark-
ing Safe Exploration in Deep Reinforcement Learning,
https://cdn.openai.com/safexp-short.pdf, 2019.

[24] J. Achiam, D. Held, A. Tamar, and P. Abbeel, “Constrained
policy optimization,” in ICML, PMLR, 2017, pp. 22–31.

[25] Y. Liu, J. Ding, and X. Liu, “Ipo: Interior-point policy opti-
mization under constraints,” in AAAI, 2020, pp. 4940–4947.

[26] T.-Y. Yang, J. Rosca, K. Narasimhan, and P. J. Ramadge,
“Projection-based constrained policy optimization,” in ICLR,
2020.

[27] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and
O. Klimov, Proximal Policy Optimization Algorithms,
arXiv:1707.06347, 2017.

[28] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz,
“Trust Region Policy Optimization,” in ICML, JMLR.org,
2015, pp. 1889–1897.

[29] D. P. Bertsekas, Constrained optimization and Lagrange
multiplier methods. Academic press, 1982, vol. 1.

[30] E. Leurent, An environment for autonomous driving
decision-making, https://github.com/eleurent/
highway-env, 2018.

[31] M. Treiber, A. Hennecke, and D. Helbing, “Congested
Traffic States in Empirical Observations and Microscopic
Simulations,” Phys. Rev. E, vol. 62, pp. 1805–1824, 2 2000.

[32] T. Liu, R. Zhou, D. Kalathil, P. R. Kumar, and C. Tian,
“Learning Policies with Zero or Bounded Constraint Viola-
tion for Constrained MDPs,” in NeurIPS, 2021, pp. 17 183–
17 193.

[33] T. D. Simão, N. Jansen, and M. T. J. Spaan, “AlwaysSafe:
Reinforcement Learning Without Safety Constraint Vio-
lations During Training,” in AAMAS, IFAAMAS, 2021,
pp. 1226–1235.

[34] Q. Bai, A. S. Bedi, M. Agarwal, A. Koppel, and V. Aggar-
wal, “Achieving Zero Constraint Violation for Constrained
Reinforcement Learning via Primal-Dual Approach,” in
AAAI, AAAI Press, 2022, pp. 3682–3689.

4023

Authorized licensed use limited to: Radboud University Nijmegen. Downloaded on November 09,2022 at 09:32:20 UTC from IEEE Xplore. Restrictions apply.

