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Abstract
We present recursive small-step multi-agent A∗

(RS-MAA∗), an exact algorithm that optimizes the
expected reward in decentralized partially observ-
able Markov decision processes (Dec-POMDPs).
RS-MAA∗ builds on multi-agent A∗ (MAA∗), an
algorithm that finds policies by exploring a search
tree, but tackles two major scalability concerns.
First, we employ a modified, small-step variant of
the search tree that avoids the double exponential
outdegree of the classical formulation. Second, we
use a tight and recursive heuristic that we compute
on-the-fly, thereby avoiding an expensive precom-
putation. The resulting algorithm is conceptually
simple, yet it shows superior performance on a rich
set of standard benchmarks.

1 Introduction
This paper considers finite-horizon decentralized decision-
making under stochastic dynamics and partial observability.
Markov decision processes (MDPs) are the formalism to cap-
ture decision-making under (stochastic) uncertainty. These
models assume that a centralized controller can fully observe
the state space. Partially observable MDPs (POMDPs) cap-
ture the natural restriction that a controller only observes fea-
tures of the current state. However, they still assume a cen-
tralized controller that can collect information from all sen-
sors. In decentralized control, we assume that various agents
each locally observe features of the state space and must lo-
cally select actions to execute. Such problems are formally
captured by decentralized partially observable Markov deci-
sion processes (Dec-POMDPs) [Oliehoek and Amato, 2016].
These models naturally capture, for instance, sensor networks
or multi-robot navigation in settings where communication is
impossible, ineffective, or lossy.

Finding an optimal (decentralized) controller (hereafter: a
policy) is computationally challenging; the associated deci-
sion problem is NEXP-hard [Bernstein et al., 2002]. Never-
theless, a series of advances resulted in a collection of ef-
fective algorithms that can find (1) provably optimal (ex-
act) or (2) ε-optimal solutions. The focus of this paper is
the former type, and we will refer to those as exact algo-
rithms. In particular, we consider a family of exact algorithms

referred to as multi-agent A∗ (MAA∗) [Szer et al., 2005;
Oliehoek et al., 2008; Oliehoek et al., 2013] based on A∗-
style heuristic search that finds provably optimal policies.

Multi-agent A∗. At every time-step (stage) of the decision-
making problem, a local policy must reason about the history
of observations to decide upon an action. Such a mapping
is commonly referred to as decision rules, and for all policies
together, these rules are the joint decision rules. A (joint) pol-
icy is then described by a sequence of (joint) decision rules.
MAA∗ employs a search tree where a path through the tree
encodes this sequence of decision rules. Consequently, the
leaves of this tree correspond to all policies. MAA∗ searches
through the tree by incrementally fixing decision rules for the
individual stages. Every node corresponds to a partial pol-
icy up to time step t. As standard in A∗, the order in which
we explore the tree is steered by an admissible heuristic that,
for every inner node of the tree, guarantees that we conser-
vatively overapproximate the optimal reward obtained by a
policy at the leaves of the subtree. Note that nodes reflect
choices for the joint decision rules, i.e., we must choose re-
sponses for each agent and for each observation history. This
representation yields a search tree with an outdegree that is
double exponential in the stage t. Avoiding the double expo-
nential blowup and providing a tight admissible heuristic are
two primary concerns when developing variations to MAA∗.

Our Approach: Small-step MAA∗. In classical MAA∗,
expanding nodes is cumbersome due to the double exponen-
tial outdegree of nodes. While incremental expansion [Spaan
et al., 2011] aims to alleviate the prohibitive outdegree, we
prevent this massive outdegree by taking smaller steps in the
decision-making process. In particular, we pick actions for
each agent and each observation history successively. Com-
pared to MAA∗, our search tree limits the outdegree of nodes
from double exponential to constant, while increasing the
height from linear to exponential. Paired with a tight heuris-
tic, this significantly limits the number of nodes expanded.
Furthermore, the depth of the tree is further restricted by us-
ing clustering [Oliehoek et al., 2009], which is applicable off-
the-shelf to small-step MAA∗.

Admissible Heuristics. A further important step towards
efficient small-step MAA∗ is the efficient computation of a
tight and admissible heuristic. We base our heuristic on the
recursive heuristic from Szer et al. [2005]. In a nutshell, to
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obtain a heuristic value for a node at stage t, we assume that,
at stage t, the agents once communicate their local observa-
tions. This (generally unrealistic) assumption yields a reward
value that overapproximates the actual value and thus yields
an admissible heuristic. In particular, this assumption allows
us to compute a distribution over the current state. We can
then compute a heuristic value by solving a Dec-POMDP
problem for horizon h − t from the current state. We add
two ingredients that make this heuristic effective. First, we
can decide to assume communication at a stage t′ < t, which
often allows us to reuse earlier computations and provides
even tighter results. Second, when computing the heuristic
value, we can terminate the computation early and use the
current heuristic value as a sound overapproximation of the
true value. This means that even the aborted computation
yields an admissible heuristic value. With these ingredients,
the recursive heuristic has three benefits: 1) It is tighter than
heuristics employed by the state-of-the-art. 2) It can be com-
puted on-the-fly and avoids precomputing and storing heuris-
tic values. 3) It avoids dependencies on other algorithms or
formalisms, like POMDP solvers or Bayesian games.

Contributions. We present recursive small-step multi-
agent A∗ (RS-MAA∗), a fast yet conceptually simple instan-
tiation of MAA∗1. In particular, RS-MAA∗ can be con-
cisely implemented and relies neither on precomputed exter-
nal heuristics nor solvers for cooperative Bayesian games. Its
on-the-fly recursive heuristic only computes heuristic values
for nodes in the search tree that are expanded. This allevi-
ates a well-known weakness in the state-of-the-art GMAA∗-
ICE which relates to the memory consumption of storing the
heuristic values [Spaan et al., 2011]. Our formulation is com-
patible with clustering [Oliehoek et al., 2009]. A prototype
of our algorithm significantly outperforms the state-of-the-art
optimal planners. In particular, to the best of our knowledge2,
RS-MAA∗ is the first to scale to horizon 12 on DECTIGER (an
improvement from 6) and to horizon 1500 on RECYCLING
ROBOTS (an improvement from 80).

Related Work
We review extensions and improvements of MAA∗ and some
recent trends. For a survey and in-depth treatment of various
approximate and exact approaches, we refer to the detailed
monograph by Oliehoek and Amato [2016].

Szer et al. [2005] introduce multi-agent A∗ (MAA∗),
investigating heuristics based on different approximations
such as an MDP, a POMDP and a recursive MAA∗.
Thereafter, different heuristics have been proposed to re-
duce the number of nodes expanded during the search.
Oliehoek and Vlassis [2007] introduce a heuristic that mod-
els interactions between the agents in one time step using
Bayesian games. Oliehoek et al. [2008] introduce general-
ized MAA∗ (GMAA∗), which uses a Bayesian game to de-
termine which child of a given partial policy is the best, but
solving the Bayesian game itself is also expensive. Oliehoek
et al. [2009] propose the GMAA∗ with incremental clustering

1Proofs and source code are given in the supplementary material
available at https://zenodo.org/record/7949016

2Based on masplan.org and our experiments.

(GMAA∗-IC) algorithm, which clusters observation histories
while expanding the tree to reduce the number of nodes in
the tree. This is the first approach to solve DECTIGER (see
Example 1) for horizon 5. Finally, Spaan et al. [2011] in-
troduce GMAA∗-IC with incremental expansion (GMAA∗-
ICE), which, when expanding a node, finds the best child in-
crementally by a second (nested, but not recursive) A∗ search
over partially specified Bayesian game policies. This was the
first method to solve DECTIGER for horizon 6. We refer to
Oliehoek et al. [2013] for an in-depth explanation of these ap-
proaches. In this paper, we propose a new variation of MAA∗

that improves the scalability even further, solving DECTIGER
with horizon 12.

The state-of-the-art to generate ϵ-optimal solutions reduces
the Dec-POMDP to an MDP with continuous state space and
uses an adaption of heuristic-search value-iteration for con-
tinuous MDPs [Dibangoye et al., 2016]. Recent work has
studied different subclasses of Dec-POMDPs to alleviate the
complexity of the general method. Amato et al. [2019] adds
macro actions (also known as option [Pateria et al., 2022;
Barto and Mahadevan, 2003]) to the Dec-POMDP, which al-
lows an agent to perform multiple actions without having
to coordinate with the remaining agents. Xie et al. [2020]
study problems with two agents under one-sidedness, that
is, where one of the agents observes the actions and ob-
servations of the other agent. Finally, Lauri et al. [2019;
2020] investigate the information gathering task where the
reward function is based on the joint belief of the agents.

The idea of splitting up steps in the A∗ search tree into
smaller steps to limit the outdegree of the tree was proposed
before by Cazenave [2010], and applied to multi-agent path
finding and multiple sequence alignment. However, it has not
been applied before to solving Dec-POMDPs.

2 Problem Statement
∆(X) denotes distributions over finite sets X .

Definition 1 (Dec-POMDP). A Dec-POMDP is a tuple
⟨D,S,A,O, b, T,R,O⟩ with a set D = {1, . . . , n} of n
agents, a finite set S of states, a set A =×i∈D Ai of joint
actions, where each Ai is the finite set of local actions of
agent i, and a set O =×i∈D Oi of joint observations, where
each Oi is the finite set of local observations of agent i. The
transition function T : S × A → ∆(S) defines the transi-
tion probability Pr(s′ | s, a), b ∈ ∆(S) is the initial belief,
R : S × A → R is the reward function, and the observation
function O : A× S → ∆(O) defines the observation proba-
bility Pr(o | a, s′).
A Dec-POMDP describes a system that initially starts in a
state s0 with probability b(s0). At each time step t, each
agent i selects a local action ati. Together, this yields a joint
action at = ⟨at1, . . . , atn⟩ and a reward rt = R(st,at).
The system evolves to the next state st+1 with probability
Pr(st+1 | st,at). The observation ot+1 is obtained with
probability Pr(ot+1 | at, st+1), and each agent i receives the
local observation ot+1

i . We call the sequence of joint observa-
tions τ = o1o2 . . .ot a joint observation history (JOH) and
the sequence of local observations τi = o1i o

2
i . . . o

t
i of agent i
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a local observation history (LOH). We denote the first d ob-
servations of τ by pre(τ , d). We denote the set of all LOHs
of length exactly ℓ and at most ℓ by Oℓ

i and O≤ℓ
i , respectively.

We are interested in offline planning: How should the in-
dividual agents act locally such that, jointly, they optimize
the cumulative reward up until horizon h? A local policy for
agent i maps LOHs for that agent to a local action, formally:
πi : O≤h−1

i → Ai. A joint policy is a tuple of local policies
π = ⟨π1, · · · , πn⟩, and Π denotes the set of all joint policies.

Given a joint policy π, we can define the value of executing
this policy in the initial belief b over a horizon h as:

Vπ(b, h) = Eπ

[
h−1∑
t=0

R(st,at)

∣∣∣∣∣s0 ∼ b

]
,

where st and at are the state and joint action at time step t.

Problem statement: Given a Dec-POMDP and a hori-
zon h, find a joint policy π that maximizes Vπ(b, h).

Example 1 (Decentralized tiger problem). The DECTIGER
problem [Nair et al., 2003] is a multi-agent variation of the
Tiger problem [Kaelbling et al., 1998]. In this problem, two
agents are in front of two doors. A tiger is behind the left
or the right door, which indicates the state of the environ-
ment (TL or TR), and a treasure is behind the other. Each
agent has three actions: listen (Li), open the left door (OL),
or open the right door (OR). Listening gives a noisy obser-
vation regarding the location of the tiger (HL or HR). In the
multi-agent variation, the dynamics depend on the joint ac-
tion. The state resets if any agent opens a door, in which case
both agents get an uninformative observation (uniform dis-
tribution over the observations). If only one agent opens the
door with the treasure, they receive a positive reward. But, if
both agents find the treasure, they receive a larger reward. A
large penalty is given for opening the door with the tiger.

The DECTIGER problem (Example 1) illustrates the chal-
lenges in cooperating to solve a Dec-POMDP. In this case, be-
sides finding a policy to gather information, the agents must
also coordinate in the offline phase deciding the right moment
to open a door. Without such coordination, the actions of one
agent could compromise the belief of the remaining agents.

3 Small-step Multi-agent A∗

In this section, we frame the search for an optimal policy by
an incremental heuristic search over partial policies.

Ordered LOHs. For our algorithm, we explore LOHs in
a fixed order. Intuitively, we order the LOHs of all agents as
follows: first by stage (length of the observation history), then
by agent, and then lexicographically by observation history.
This ordering is formalized in the following definition.

Definition 2. Given a total order ⪯i on Oi, we define a total
order ⪯ on

⋃n
i=1 O

≤h−1
i such that τ ti ⪯ τ t

′

j if(
t < t′

)
or

(
t = t′ ∧ i < j

)
or

(
t = t′ ∧ i = j ∧ τ ti ⪯lex

i τ t
′

j

)
.

Throughout the paper, we use this fixed order for LOHs.

Stage Agent LOH

2

0 1 ∅

∅
OROL Li

OROL Li

1 1 HL

HR

OROL Li

OROL Li

OROL Li

OROL Li

2 HL

HR

2 1 HL,HL

Figure 1: A partial tree of the DECTIGER problem at stage 1, where
we expanded all nodes in stage 0 but only a subset of the nodes in
stage 1 after expanding the gray node (filled).

Partial policies. A local partial policy for agent i is a par-
tial function φi : O≤h−1

i → Ai. A partial policy is a tuple
of local partial policies φ = ⟨φ1, . . . , φn⟩. The length of a
partial policy is ℓ, if every local partial policy φi is defined on
only the first ℓ LOHs (of any agent) according to the order in
Definition 2. Hence, a partial policy of length ℓ is defined on
ℓ LOHs in total, summed over all local partial policies. The
stage σ(φ) of a partial policy φ is t, if the policy is defined
for all LOHs of length t− 1, but not for all LOHs of length t.
The set of all partial policies is Φ. A partial policy φ′ extends
a partial policy φ, denoted by φ <E φ′ if φ′ agrees with φ
on all LOHs for which φ specifies the action. Formally,

φ <E φ′ ⇐⇒ ∀i ∈ D.∀τi ∈ O≤h−1
i .φi(τi) ∈ {⊥, φ′

i(τi)},

where φi(τi) = ⊥ denotes that φi is not defined at τi. The
extensions of φ are the fully-specified policies extending φ:

E(φ) =
{
π ∈ Π | φ <E π

}
.

Search tree. We define a search tree with an empty policy
at the root and fully specified policies at the leaves.

Definition 3 (Small-step search tree). In a small-step search
tree for a Dec-POMDP, the nodes are the partial policies, the
root node is the empty policy, and the children of a partial
policy φ of length ℓ are exactly the partial policies φ′ such
that φ <E φ′ and the length of φ′ is ℓ+ 1.

Example 2. Consider the (partial) tree in Figure 1. For the
highlighted node, we add three children, each reflecting the
choice of an action by agent 1 after observing HL. In this tree,
we can extract the policy of a node by backtracking. For ex-
ample, the policy in the bottom-left node is ⟨{∅ 7→ Li,HL 7→
Li,HR 7→ Li}, {∅ 7→ Li,HL 7→ Li,HR 7→ OL}⟩.
A∗. Small-step MAA∗ applies A∗ on the small-step search
tree. A∗ successively expands the nodes in the tree [Russell
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and Norvig, 2020]. To guide the expansion of nodes, a heuris-
tic Q : Φ → R is used. The A∗ algorithm keeps a list of open
nodes, which initially only contains the root. In each step,
the open node with the highest heuristic value is selected, this
node is removed from the list of open nodes, and all children
are added to the list of open nodes. Once a leaf is selected
as node with the highest heuristic value, that node is returned
as the final solution. The algorithm is exact if the heuristic is
admissible, i.e. if Q is an overapproximation:

Q(φ) ≥ max
π∈E(φ)

Vπ(b, h).

Difference to classical MAA∗. Classical MAA∗ constructs
a stage-(t+ 1) policy in one step from a stage-t policy, spec-
ifying actions for all length-t LOHs for all n agents. As
a result, each stage-t policy has O

(
|A∗|n|O∗|t

)
children in

the A∗ search tree, where |A∗| and |O∗| denote the sizes of
the largest local action and observation sets, respectively. In
small-step MAA∗, this is split up in n|O∗|t levels, where each
node has up to |A∗| children and just adds an action for one
agent for one particular LOH.
Example 3. In the tree from Fig. 1, RS-MAA∗ reaches only
12 nodes in stage 1 and 6 nodes in stage 2 by expanding only
6 nodes below the gray node in stage 1. By contrast, MAA∗

would have reached 81 nodes at stage 2 after expanding the
gray node.
Compared to MAA∗, our search tree limits the outdegree of
the nodes from double exponential to constant, at the cost of
increasing the tree height from linear to exponential.

4 Admissible Recursive Heuristics
Next, we introduce two families of admissible heuristics.
Generalized policies. To define admissible heuristics, we
introduce more general types of policies. First, we allow lo-
cal policies πi for each agent to depend on the joint observa-
tion history. A generalized local policy πi : O≤h−1 → Ai

maps JOHs to a local action. A generalized (joint) policy is
a tuple of generalized local policies (one for each agent). Let
Πgen denote the set of all generalized policies. As before, a
generalized policy π extends a partial policy φ, denoted by
φ <E π, if πi agrees with φi on all OHs corresponding to an
LOH for which φi specifies the action. Formally,

φ <E π ⇐⇒ ∀i ∈ D.∀τ ∈ O≤h−1. φi(τi) ∈ {⊥, πi(τ )}.
The generalized extensions of a partial policy φ are the set of
all fully specified generalized policies agreeing with φ:

Egen(φ) =
{
π ∈ Πgen | φ <E π

}
.

Fixed-depth heuristics. First, we write the Dec-POMDP
optimization problem over generalized policies as

max
π∈Πgen

Vπ (b, h)

subject to τi = τ̃i =⇒ πi (τ ) = πi (τ̃ )

for all i ∈ D, τ , τ̃ ∈ Ov with v ∈ {0, . . . , h− 1}.

(1)

Intuitively, we optimize over the generalized policies but add
constraints that ensure agents have to take equal actions on

joint OHs that they cannot distinguish, therefore any feasible
solution encodes a decentralized policy. By relaxing some
of the constraints, we achieve optimization problems that de-
scribe an upper bound on the optimal Dec-POMDP value,
thus forming admissible heuristics.

Definition 4. Let φ be a partial policy. The Dec-POMDP
heuristic QDec,d(φ) of depth d is defined as

max
π∈Egen(φ)

Vπ (b, h) subject to

(pre(τ , d) = pre(τ̃ , d) ∧ τi = τ̃i) =⇒ πi (τ ) = πi (τ̃ )

for all i ∈ D, τ , τ̃ ∈ Ov with v ∈ {d, . . . , h− 1}.

The heuristic QDec,d allows local policies to condition their
choices after stage d on the local observation of other agents
up to stage d. Notice that for d = 0, the Dec-POMDP heuris-
tic corresponds to the original optimization problem (1).

For stage-t partial policies with d ≤ t, this heuristic is
easier to compute than the Dec-POMDP value itself. Since
d ≤ t, the policy for the first d stages is specified by φ, and
we can compute the realized reward Vφ(b, d) up to stage d as

Vφ(b, d) = Eφ

[∑d−1
t=0 rt

]
. Revealing the first d joint obser-

vations τ ∈ Od provides the agents with a new joint belief
bτ after d stages, so for each length-d JOH we solve a Dec-
POMDP with horizon h− d and the new belief bτ :

QDec,d(φ) = Vφ (b, d) +
∑

τ∈Od

Pr(τ ) · max
π∈E(φ|τ )

Vπ (bτ , h−d) ,

(2)

where φ|τ is the shortened partial policy for which φ has al-
ready specified an action: (φ|τ )i(τ̃) = φi(τiτ̃). Note that φ
may have already specified actions for LOHs of length larger
than d. These actions are then also specified in problems with
horizon h− d through the shortened partial policy φ|τ .

When computing QDec,d, we allow each agent to also base
their decision on these first d joint observations. The smaller
d, the less information agents have, so the tighter the heuristic
is. This provides the intuition for the following lemma.

Lemma 1. Let φ be a partial policy. If d′ ≤ d, then
QDec,d′(φ) ≤ QDec,d(φ).

Proof. The definitions of QDec,d′ and QDec,d only differ
in the condition used in the antecedent of the constraint.
Since the condition pre(τ , d) = pre(τ̃ , d) is stronger than
pre(τ , d′) = pre(τ̃ , d′), the maximization problem for
QDec,d effectively removes some constraints from the max-
imization problem for QDec,d′ .

Since a less constrained maximization problem has a
higher (or equal) optimal value, the result follows.

Theorem 1. QDec,d is admissible.

Proof. We can write maxπ∈E(φ) Vπ(b) as

max
π∈Egen(φ)

Vπ (b, h) subject to

τi = τ̃i =⇒ πi (τ ) = πi (τ̃ )

for all i ∈ D, τ , τ̃ ∈ Os with s ∈ {0, . . . , h− 1}.
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Since the condition pre(τ , 0) = pre(τ̃ , 0) is empty, it follows
that maxπ∈E(φ) Vπ(b) = QDec,0(φ). By Lemma 1, it fol-
lows that QDec,d(φ) ≥ QDec,0(φ) = maxπ∈E(φ) Vπ(b) for
all partial policies φ, so QDec,d is admissible.

Variable-depth heuristics. The smaller d, the harder the
heuristic QDec,d is to compute, since (by Eq. 2) we have to
solve Dec-POMDPs with a larger horizon. On the other hand,
we do not want to compute QDec,d(φ) if σ(φ) < d, because
then Eq. 2 cannot be used. We suggest to use QDec,d unless
σ(φ) < d, in which case we use QDec,σ(φ)(φ).

Towards this idea, for some φ we would like to use heuris-
tics QDec,σ(φ)(φ). However, this heuristic is suboptimal in
the following sense: Along the search tree, whenever we
increase the stage, we switch to a looser heuristic. Conse-
quently, it is possible that the heuristic value of a node is
larger than that of its parent, despite more actions being fixed.
To fix this weakness, we may simply take the minimum with
the heuristic value of the parent. Formally, let the parent φ−

of a partial policy φ of length ℓ > 0 be the partial policy of
length ℓ− 1 such that φ− <E φ.
Definition 5. Let φ be a partial policy. The heuristic Qd

is recursively defined by Qd(φ) = ∞ if σ(φ) = 0, and if
σ(φ) > 0 we define

Qd(φ) = min{QDec,min{σ(φ),d}(φ), Qd(φ
−)}.

We can also set d = ∞; then min{σ(φ), d} = σ(φ).
Corollary 1. Qd is admissible for d ≥ 1.
This follows from Thm. 1 and Qd(φ) ≥ QDec,1(φ), d ≥ 1.
Comparing heuristics. The recursive Dec-POMDP heuris-
tic proposed by Szer et al. [2005] can be written as
QDec,σ(φ)(φ). It does exhibit the weakness mentioned above
that we fix in the definition of Qd. Two other commonly
used heuristics in the literature [Oliehoek and Vlassis, 2007;
Oliehoek et al., 2013] are the QPOMDP and QBG heuristic.
For the QPOMDP heuristic, it is assumed that the agents can
communicate and hence have access to all joint observations
when making their decisions. For the QBG heuristic, it is as-
sumed that agents can communicate with one step of delay.
The QPOMDP and QBG heuristics can be captured as instances
of the generalized policy optimization problem. This allows
to compare our heuristics to QPOMDP and QBG.
Theorem 2. Let φ be a partial policy. Then Q∞(φ) ≤
QPOMDP(φ) and QDec,σ(φ)−1(φ) ≤ QBG(φ).

Proof. The (centralized) POMDP policy optimization prob-
lem is the unconstrained version of the optimization problem
(1), from which the first inequality follows.

The one-step delay communication problem used to com-
pute QBG corresponds constraints of the form

(pre(τ , s−1)=pre(τ̃ , s−1) ∧ τi = τ̃i) =⇒ πi (τ )=πi (τ̃ ) .

The antecedent of the constraint pre(τ , t−1) = pre(τ̃ , t−1)∧
τi = τ̃i used in QDec,t−1(φ) is weaker for s ≥ t (leading to a
more constrained problem), whereas all actions correspond-
ing to OHs of length s ≤ t − 1 are already fixed (and satisfy
the Dec-POMDP constraint, so certainly also the constraint
for QBG). This shows the second inequality.

5 Abandoning Heuristic Computations Early
In this section, we consider a cheap variation of the recur-
sive heuristic that provides an upper bound on Qd and is thus
admissible. We algorithmically obtain this heuristic by early
termination of the computation of the recursive heuristic.

Assume we are computing a heuristic value for the par-
tial policy φ. By Eq. 2, this can be done by solving Dec-
POMDPs with a smaller horizon, e.g., using an A∗ algorithm
with an admissible heuristic Q. Due to the nature of A∗, the
highest heuristic value of an open node is an upper bound
for the expected reward of an optimal policy. Hence, we can
abandon a computation after exploring M nodes and return
the highest heuristic value of an open node at that point. We
call this value LM (φ, Q). If the heuristic is such that the
heuristic value of node φ is always at most the value of its
parent φ−, then the A∗ algorithm explores nodes in order of
decreasing values. LM (φ, Q) will be the M th largest value
in the tree, or, if A∗ terminates within M steps, the value of
the fully specified policy. Next, we formalize LM (φ, Q).

Definition 6. Consider a search tree with heuristic Q : Φ →
R and some fixed partial policy φ. We define the set of can-
didate policies Φc = {φ <E φ′ ∧ σ(φ′) ≥ 1}. Let w be
an ordered list over Φc such that Q(wi) ≥ Q(wj) for i < j,
and k∗ = min{k | wk ∈ Π} is the smallest index where w
contains a fully specified policy. With K = min{k∗,M}, we
define LM (φ, Q) = Q(wK).

Indeed, wk∗ = argmaxπ∈Φc∩Πgen Q(π), i.e., the fully
specified policy in Φc with the largest heuristic value is the
first fully specified policy in the list. Furthermore, we know
that Q(wK) ≥ Q(wM ). Note that we only count partial poli-
cies with stage larger than 0, as we do not want to compute
heuristic values for partial policies with stage 0; formally, we
assign these nodes an infinite heuristic value.

Recall that the heuristic Qd can be written in terms of op-
timal values of Dec-POMDPs with a lower horizon. For the
heuristic QM,d, we substitute the precise values with the val-
ues obtained after early termination.

Definition 7. First, QM,d(φ) = ∞ for σ(φ) = 0. For
σ(φ) ≥ 1, we define QM,d(φ) inductively over the horizon.
For h = 1, partial policies with σ(φ) ≥ 1 are fully specified
and QM,d(φ) = Vφ(b, 1). For h = ℓ+ 1, QM,d(φ) is

min
{
Vφ(b, t)+

∑
τ∈Ot

[Pr(τ )LM (φ|τ , QM,d)] , QM,d(φ
−)

}
,

where t = min{d, σ(φ)}.

Note that the QM,d values used for computing LM (φ|τ )
are values with horizon ℓ+1− t ≤ ℓ, so these are defined al-
ready. Hence, the recursion is well-founded. Naturally abort-
ing earlier leads to values that are less tight:

Lemma 2. Let φ be a partial policy. Then

Qd(φ) ≤ QM ′,d(φ) ≤ QM,d(φ) for all M ′ ≥ M.

A proof of this lemma is given in the supplementary material.
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6 Recursive Small-Step Multi-Agent A∗

In a nutshell, Recursive Small-step Multi-Agent A∗ (RS-
MAA∗) applies the QM,d heuristic with suitable M and d
on the search tree in Def. 3. Here, we discuss the choice for
M and d, as well as other improvements that help scalability.

Clustering. Following Oliehoek et al. [2009], we employ
incremental lossless clustering. Clustering computes groups
of LOHs for which the same action choice is provably opti-
mal. We use incremental clustering to compute the clustered
LOHs for stage t + 1 once a policy is expanded where each
LOH corresponding of length t is assigned an action, but no
LOH of length t + 1. Each edge in the small-step search
tree now corresponds to assigning an action to each LOH in a
clustered set of LOHs.

Storing heuristics. A key feature of RS-MAA∗ is that
heuristics are computed on-the-fly, in contrast to precomput-
ing them. Recall that we solve the Dec-POMDP for smaller
horizons and different initial beliefs. The combination of
horizon and initial belief (and initial part of the policy) can
appear in multiple computations. To avoid recomputing those
heuristic values, we memoize all values. To enable find-
ing values that we already computed, we characterize each
heuristic as a tuple containing 1) the horizon, 2) the initial
belief, 3) an index describing the partial policy, and 4) a list
of indices describing the clustering structure at each stage.
We additionally reuse computations for which we completed
the computation of Qd, i.e., for which we did not terminate
early. Those values can be reused when evaluating extended
policies. In particular, whenever we do not terminate early,
we not only find a heuristic value, but also a fully specified
policy π. Then, for all φ′ satisfying φ <E φ′ <E π we have
Q(φ′) = V (π, σ(π)). Hence, we can also store the heuristic
value for all such φ′ without explicitly computing them.3

Dynamically abandoning heuristic computations early.
In Section 5, we have shown how heuristic computations
can be terminated early based on a fixed maximum num-
ber of iterations M . We can go further and also terminate
the heuristic computation of Q(φ) when the highest heuris-
tic value of an open node is much smaller than the heuristic
value of the parent u = Q(φ−), which is an upper bound
for Q(φ). Specificially, we terminate the heuristic computa-
tion after M iterations or if the new heuristic value v satisfies
v ≤ u − αmax{|u|, 1}, where α is a parameter, called the
threshold. The intuition for this is that a large drop in com-
puting the heuristic value is sufficient to avoid expanding that
node again (at least for a long time), so spending more time
computing heuristics for this node is likely a waste of time.

Dynamically increasing depth. While Lemma 1 tells us
that Qd(φ) ≤ Qd′(φ) if d ≤ d′, the inequality QM,d(φ) ≤
QM,d′(φ) does not necessarily hold, i.e., taking the lowest
depth does not always lead to the tightest heuristic when
abandoning heuristic computations early. Hence, we actu-
ally compute Qd′(φ) for all d′ ≥ d. Computing the heuristic

3We only store it for policies φ′ of the same stage as clustering
in later stages may depend on the observations that are revealed.

is much more expensive for lower depths, the additional run-
time cost of computing heuristics for higher depths is neg-
ligible. Each time we expand a node φ, we update d to
argmind′ Qd′(φ) (taking the largest value of d′ in case of
a tie) for all descendants of that node.

Last stage. We treat nodes almost at the bottom of the
search tree differently. To compute actions for the last agent
for the last stage, we can compute the best fully specified pol-
icy that is a descendant of this policy directly. For each LOH
of the last agent, we can compute the best action to take inde-
pendently by computing the expected reward of each action
according to the joint multi-agent belief.

Storing distributions. To compute policy values and the
clustering structure, we need to work with the full joint dis-
tribution Pr(τ ,o, s) and its conditional distributions. It turns
out to be more efficient to instead store the marginal proba-
bilities Pr(τ ,o) and indices of conditional distributions over
states Pr(s | τ ,o), where the map between indices of state
distributions and the corresponding distributions is stored
globally. While in the worst case this takes more space than
simply storing the joint distribution Pr(τ ,o, s), in practice
many of the conditional distributions Pr(s | τ ,o) are equal,
thereby saving space. Moreover, using the indices allows for
easy caching.

Choosing parameters. The most important parameter to
set is d. Lower values of d give tighter heuristics but are more
expensive to compute. Setting the number of iterations M
too low leads to an overly loose heuristic. However, setting
M high leads to generally higher computation times. Due to
the recursive nature of the algorithm, however, the time can
scale as badly as O(Mh). Typically, the computational effort
is much less, in particular due to the tighter heuristic and the
fact that recursive heuristics at later stages are easier to com-
pute. Furthermore, some heuristics already find a complete
policy before M iterations and most heuristics do not nest h
layers deep (except if d = 1). The effect of α is similar to
the effect of M , but harder to quantify. In particular, higher
values of α yield tighter heuristics and are harder to compute.

7 Empirical Evaluation
This section provides an empirical evaluation of RS-MAA∗

on a set of standard benchmarks, in comparison with
GMAA∗-ICE [Oliehoek et al., 2013], the current state-of-the-
art exact solver for Dec-POMDPs. Furthermore, we provide
an ablation study, showing the effects of clustering, comput-
ing the best response for the last agent in the last stage di-
rectly, the choice of heuristic (Qd), and abandoning the com-
putation of the recursive heuristic early based on a maximum
number of iterations (M ) or a threshold (α).

Setup. We implemented a stand-alone prototype of RS-
MAA∗ in Python 3 that does not have any dependencies. We
execute it using PyPy.4 For GMAA∗-ICE, we use the C++
implementation in the MADP toolbox [Oliehoek et al., 2017].

4The supplementary material contains the source code and
scripts to reproduce the empirical results.
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We use two versions of the QBG heuristic5 using a hybrid
representation and using tree-based incremental pruning. We
also show results for QMDP. Both implementations use float-
ing point numbers and a threshold of 10−12 for comparing
probabilities and rewards. We run RS-MAA∗ in two config-
urations, outlined in the paragraph below. For RS-MAA∗,
we report the total running time, for GMAA∗-ICE, we give
the ‘overall time’ as reported by solver. Reported timings are
an average over 3 runs. We did not observe significant vari-
ations in the timings. All experiments were ran on 3.7GHz
Intel Core i9 CPU running Ubuntu 22.04.1 LTS. We limited
each process to 16GB of memory and 1 hour of CPU time.

Hyperparameter selection. Our algorithm has three hy-
perparameters, d,M,α, discussed in Sec. 6. For most prob-
lems, Q1 and Q2 are too expensive to compute, but Q3 is a
good compromise. For easier problems, Q∞ also works well.
In a preliminary evaluation using M ∈ {100, 200, 400} and
α ∈ {0.1, 0.2}, we observed that M = 100 sometimes ex-
pands much more nodes than M = 200, but increasing M to
400 did not reduce the number of nodes (significantly) com-
pared to M = 200, and hence typically increased running
times. Hence, we set M = 200. The threshold α had a small
effect, so we conservatively set it to 0.2.

Benchmarks. We used the standard benchmarks from the
literature: DECTIGER [Nair et al., 2003], FIREFIGHT-
ING [Oliehoek et al., 2008] (3 fire levels, 3 or 4 houses),
GRID with two observations [Amato et al., 2006], BOX-
PUSHING [Seuken and Zilberstein, 2007], GRID3X3 [Am-
ato et al., 2009], MARS [Amato and Zilberstein, 2009], HO-
TEL [Spaan and Melo, 2008], RECYCLING [Amato et al.,
2007], and BROADCAST [Hansen et al., 2004].

Results
Table 1 summarizes the results for the benchmarks with
different horizons h. We show the optimal value and
timing results for GMAA∗-ICE (for three heuristics) and
for RS-MAA∗ (for two heuristics). In summary, we
observe that RS-MAA∗ scales to larger horizons on
DECTIGER,FIREFIGHTING4, GRID, GRID3X3, MARS, and
RECYCLING. On HOTEL, scalability is comparable, but RS-
MAA∗ is faster. On BROADCAST and FIREFIGHTING3,
GMAA∗-ICE scales better. In line with the computational
complexity, horizons ≤ 10 are already challenging on many
benchmarks. However, HOTEL, RECYCLING and BROAD-
CAST have a constant number of clustered LOHs which al-
lows to scale to much larger horizons [Oliehoek et al., 2013].

RS-MAA∗ scales much further on on DECTIGER and
MARS. On DECTIGER, the tightness of the heuristic is essen-
tial. The QBG heuristic reveals too much information which
leads to unrealistically high heuristic values. On Q3, how-
ever, only information from the first two stages is shared,
which under an optimal policy becomes irrelevant in later
stages. This leads to a very tight heuristic in the later stages.

On MARS, QBG struggles as its run time complexity in-
cludes a factor O

(
|A∗|n|O∗|

)
, which is 616 for MARS due to

5The exact configurations used by [Oliehoek et al., 2013] do not
seem to be available in the MADP toolbox, we use QBGhybrid
and QBGTreeIncPrune.

GMAA∗-ICE RS-MAA∗

h value QMDP prune hybrid Q3 Q∞
DECTIGER

5 7.026451 40 <1 1 <1 <1
6 10.381625 MO 16 18 <1 17
7 9.993568 MO TO MO 2 MO
8 12.217263 MO TO MO 2 MO
9 15.572437 MO TO MO 9 MO

10 15.184380 MO TO MO 628 MO
11 17.408076 MO TO MO 249 MO
12 20.763250 MO TO MO 762 MO

FIREFIGHTING (⟨nh = 3, nf = 3⟩)
3 −5.736969 2 TO 4 1 1
4 −6.578834 29 TO 181 3 3
5 −7.069874 1730 TO 221 24 41
6 −7.175591 57 TO TO 281 281
7 −7.175591 33 TO TO MO MO

FIREFIGHTING (⟨nh = 4, nf = 3⟩)
3 −11.135643 567 TO 989 8 8
4 −14.106819 TO TO TO 137 138

GRID
3 1.550444 <1 TO 7 <1 <1
4 2.241577 5 TO 288 2 2
5 2.970496 MO TO TO 9 9
6 3.717168 MO TO TO 97 96

BOXPUSHING
3 66.081000 <1 TO 2535 <1 <1
4 98.593613 131 TO TO 10 9
5 107.729851 TO TO TO MO MO

GRID3X3
4 0.432900 1 MO TO 1 1
5 0.895656 3 MO TO 2 2
6 1.492987 MO MO TO 12 12

MARS
4 10.180800 8 MO TO 1 1
5 13.266538 MO MO TO 2 2
6 18.623165 MO MO TO 5 5
7 20.900724 MO MO TO 21 10
8 22.478798 MO MO TO 40 MO
9 24.320398 MO MO TO 160 MO

HOTEL
5 27.187500 MO 3 19 <1 <1

100 502.187500 MO 69 MO 201 21
250 1252.187500 MO 126 MO 595 57
500 2502.187500 MO 230 MO 1317 119

1500 7502.187500 MO 629 MO TO 397
2000 10002.187500 MO 832 MO TO 557

RECYCLING
8 25.709878 <1 <1 MO 1 <1

20 62.633136 52 <1 MO 4 1
70 216.479290 MO 14 MO 209 2
80 247.248521 MO 68 MO 292 3

100 308.786982 MO MO MO 467 4
500 1539.556213 MO MO MO TO 21

1500 4616.479290 MO MO MO TO 113
BROADCAST

10 9.290000 <1 <1 MO <1 <1
100 90.760423 MO 32 MO 37 36
250 226.500545 MO 149 MO 718 720
500 452.738119 MO 385 MO 3496 3016
800 724.214207 MO MO MO TO TO

Table 1: Results and running times (seconds). TO and MO denote
timeout (>3600s) and memout (>16GB).
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Qd Q3 Q3 Q3 Q3 Q1 Q2

α 0.2 0.2 ∞ ∞ 0.2 0.2
h = 6 <1 <1 <1 <1 3 1 1 1
h = 7 2 2 2 2 293 5 MO 2
h = 8 2 31 3 40 3355 15 MO 2
h = 10 628 MO 630 TO TO TO MO 2453
h = 12 762 MO 1129 TO TO TO MO 1296

Table 2: Ablation study for DECTIGER, showing computation times
in seconds. The last two columns are computed using the baseline
parameters M = 200, heuristic Q3, α = 0.2.

the eight different observations. Hence, computing QBG is
infeasible (for every horizon). QMDP can be computed, but is
not sufficiently tight. Likewise, the tighter heuristic Q3 out-
performs Q∞ for sufficiently large horizons.

GRID is a prime example where the on-the-fly computa-
tion of the heuristic values is an essential benefit, as the QBG
heuristic cannot finish the computation of the heuristic values.

On HOTEL and BROADCAST, the QBG heuristic is already
tight, which means that the more expensive computation of
Qd does not significantly reduce the number of nodes that are
explored. This also explains why Q∞ outperforms Q3.

FIREFIGHTING3’s structure makes h = 5 expensive (no
potential for clustering). The recursive nature of RS-MAA∗

suffers from this when computing values for h ≥ 6.
In short, RS-MAA∗ performs generally better on domains

where agent knowledge about the state is relatively valuable.
Note that the recursive heuristics are tighter than other known
competitive heuristics because they share less information
about observations (and hence about the state). Hence, if
knowledge about the state is valuable, then the additional
tightness of the recurive heuristic is more essential for lim-
iting the number of nodes expanded in the search tree.

RS-MAA∗ is also better on domains with many clustered
observations, as the speed-up provided by using the small-
step search tree is more significant in this case. By con-
trast, GMAA∗-ICE seems better on domains where there are
very few clustered observations, although in these cases RS-
MAA∗ can sometimes still outperform GMAA∗-ICE.

Ablation study. For DECTIGER, we provide additional re-
sults using alternative configurations in Table 2. The first
configuration reflects the baseline. The next 5 configura-
tions change the three hyperparameters. In particular, setting
M = α = ∞ disables abandoning computations as described
in Sec. 5. We additionally used the baseline parameters but
without clustering or the last-stage optimization from Sec. 6.
Clustering, early termination, and avoiding low-depth heuris-
tics are essential components for the performance. Terminat-
ing early based on a threshold and the last-stage optimization
are less essential, but still provide a significant speedup.

Benchmark-specific parameters. Although the parame-
ters M = 200, d = 3, and α = 0.2 work well for a wide
range of benchmarks, some benchmarks benefit from differ-
ent parameters. For example, BOXPUSHING is solved faster
when using the tighter Q2 heuristic, namely in respectively 3
and 6 seconds for h = 4 and h = 5. HOTEL can be solved

in 44 seconds for h = 2000 using a less tight M = 25 and
Q∞. Finally, BROADCAST can be solved in respectively 250,
465 and 1342 seconds for h = 500, h = 800, and h = 2000
using a less tight M = 25 and Q∞. Notably, it seems that for
most benchmarks, parameter choices that are good for a short
horizon are also a good choice on larger horizons.

Comparison to ϵ-optimal Algorithms
It is interesting to understand the performance of RS-MAA∗

compared to less strict ϵ-optimal algorithms, such as FB-
HSVI [Dibangoye et al., 2016]. These algorithms provide
an upper bound and a lower bound for the optimal value that
are at most ϵ apart. As there is no implementation of FB-
HSVI available at the time of writing, we provide a short
qualitative comparison based on the data from Dibangoye et
al. [2016]. For GRID, GRID3X3, MARS and BOXPUSHING,
FB-HSVI is able to provide ϵ-optimal solutions for horizon
10, thereby outperforming RS-MAA∗. For BROADCAST, it is
is likely that RS-MAA∗ outperforms FB-HSVI, as computing
the solution for horizon 100 already took 473 seconds for FB-
HSVI. For RECYCLING, both algorithms perform very well
and to see which algorithm performs better, results for FB-
HSVI beyond horizon 100 are needed. All run times above
allow an ϵ = 0.01 optimality gap.

Based on this qualitative comparison, some aspects remain
unclear: It is unclear from which ϵ onwards RS-MAA∗ out-
performs FB-HSVI, and it is also unclear in which circum-
stances the upper bounds obtained with RS-MAA∗ within a
given timelimit are stricter than the ones found by FB-HSVI.

8 Conclusion
We presented a novel method for finding optimal solutions for
finite-horizon Dec-POMDP problems. Our approach showed
competitive, and often superior, performance compared to the
state-of-the-art. In particular, for several benchmarks, we
extend the highest horizon for which an optimal solution is
known. The contributions that led to this advancement are
a small-step variant of the search tree for MAA∗, as well
as a novel heuristic that is computed on-the-fly. In the fu-
ture, we will investigate supporting nonlinear objectives, rel-
evant, e.g., for rewards that relate the joint belief of agents, as
in Lauri et al. [2019] and Lauri et al. [2020]. Finally, towards
further scalability, we will integrate results by approximate
Dec-POMDP solvers in the heuristic computation.
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