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Abstract

Automated curriculum generation for reinforce-
ment learning (RL) aims to speed up learning by
designing a sequence of tasks of increasing diffi-
culty. Such tasks are usually drawn from probabil-
ity distributions with exponentially bounded tails,
such as uniform or Gaussian distributions. How-
ever, existing approaches overlook heavy-tailed
distributions. Under such distributions, current
methods may fail to learn optimal policies in rare
and risky tasks, which fall under the tails and yield
the lowest returns, respectively. We address this
challenge by proposing a risk-aware curriculum
generation algorithm that simultaneously creates
two curricula: 1) a primary curriculum that aims
to maximize the expected discounted return with
respect to a distribution over target tasks, and 2) an
auxiliary curriculum that identifies and over-sam-
ples rare and risky tasks observed in the primary
curriculum. Our empirical results evidence that the
proposed algorithm achieves significantly higher
returns in frequent as well as rare tasks compared
to the state-of-the-art methods.

1 INTRODUCTION

The design of task sequences, i.e., curricula, improves the
performance of reinforcement learning (RL) agents and
speeds up convergence in complex tasks [31]. A curriculum
typically begins with easy tasks and gradually increases
difficulty toward target tasks. A common approach is to
tailor the curricula using human input to identify easy and
hard tasks [2, 31]. Recent studies facilitate this process by
automating the curriculum generation [13, 33]. In particular,
self-paced RL uses a context to parameterize the dynamics
and rewards of the environment, which implicitly defines
a task [23, 24, 25, 26]. These methods assume the contexts

are drawn from distributions known a priori. Considering
problems described by a target context distribution, self-
paced RL automatically generates a curriculum, represented
by a sequence of context distributions, to speed up learning.

In general, curriculum generation methods overlook heavy-
tailed distributions and focus on target context distributions
with exponentially bounded tails, e.g., a normal or uniform
distribution. However, heavy-tailed distributions commonly
appear in the real world: words in natural language [48]
and relationships in social networks [1] follow a power law
distribution, while Cauchy distribution appear in risk analy-
sis [32] and rainfall models [29]. Rare events are more likely
to occur under heavy-tailed distributions, as the area under
the extreme regions is larger than the area under the tails of
an exponentially-bounded probability distribution [43]. A
possible explanation for such disregard is that simulated RL
environments typically have uniform variations [5, 10, 7],
and, even when a target distribution is non-uniform, it does
not reflect the heavy-tailed nature of the real world [42].

Existing RL algorithms may underperform in a context
drawn from the tails of a heavy-tailed distribution [45, 8].
This occurs because an off-the-shelf algorithm would be un-
derexposed to rare contexts, i.e., they do not encounter such
contexts sufficiently to learn a good policy for them. Cur-
riculum generation methods face the same problem since
they do not explicitly address rare contexts, either. These
approaches may yield policies that are sub-optimal in rare
contexts drawn from exponentially-bounded distributions,
as rare contexts have a low impact on the average perfor-
mance. However, in heavy-tailed distributions, these rare
contexts together are more frequent and exacerbate the per-
formance loss. Furthermore, we observe that rare contexts
correlate with risky contexts, where the agent’s return is
among the lowest (see Section 5.1). As a result, curriculum
learning methods fail to be robust in rare and risky contexts.

We address the challenges faced under heavy-tailed task
distributions by developing a risk-aware curriculum gener-
ation algorithm (RACGEN). To improve the policy in the
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tails, RACGEN simultaneously creates two curricula: 1) a
primary curriculum that speeds up the learning of the target
context distribution via self-paced RL [25]; and 2) an aux-
iliary curriculum that targets risky and rare contexts under
the primary curriculum. The auxiliary curriculum is inspired
by a cross entropy method (CEM), which estimates prob-
abilities of rare events [11]. Similar to Greenberg et al.’s
work, which does not focus on curriculum learning, we em-
ploy CEM to generate a distribution over contexts where the
agent’s return is below the conditional value of risk (CVaR)
of the distribution over returns. In comparison, via CEM,
RACGEN generates a sequence of auxiliary context distri-
butions, that identifies rare and risky contexts under primary
context distributions produced by the primary curriculum.

Contribution. Our contribution is three-fold, we : 1) iden-
tify shortcomings of existing automated curriculum methods
under heavy-tailed target context distributions; 2) propose
RACGEN, which combines self-paced RL with CEM to
simultaneously speed up learning and improve the perfor-
mance in rare contexts; and 3) demonstrate empirically that,
compared to state-of-the-art automated curriculum meth-
ods, RACGEN achieves significantly higher returns, with
p<0.001, in frequent as well as rare and risky contexts.

2 RELATED WORK

We discuss the connections between RL and three subjects
related to our work: generalization, curriculum learning,
heavy-tail task distributions and risk optimization.

Generalization in RL. We investigate the setting where
an RL agent trains on a set of tasks and is deployed to
tasks unseen during training. This problem is formulated
via contextual Markov decision processes (CMDPs). In this
setting, a singleton task refers to an MDP instance described
by a context that parameterizes the reward and transition
functions [18]. The objective is to maximize the expected
discounted return in the MDPs corresponding to the contexts
drawn from a probability distribution over the context space
of the CMDP. The contexts that an RL agent sees in train-
ing and test time are sampled from the same distribution.
Therefore, from a generalization perspective, we consider
an interpolation problem as contexts in test time can be
interpolated from contexts seen during training [22]. Under
the interpolation subarea, we particularly focus on contex-
tual MDPs where contexts are drawn from a heavy-tailed
probability distribution defined over context spaces.

Curriculum learning for RL. Automatically generating
curricula in RL aims to accelerate convergence to optimal
policies by modifying the configuration of the environment.
Numerous works consider curricula as sequences of distri-
butions over such configurations. Florensa et al. [13] focus
on distributions over initial states by starting in the neigh-
borhood of the goal state and reversely working towards a

target distribution. Other studies propose generating distri-
butions over goal states by optimizing with respect to in-
trinsic motivation [4, 33], intermediate goal difficulty [14],
value disagreement [46], and feasibility and coverage of
goal states [34]. Another line of work takes the perspective
of generating distributions of levels, i.e., environment in-
stances, that prioritizes higher learning potential [21, 20].
Our work falls under self-paced RL, a curriculum learning
approach adopted from supervised learning where training
samples are automatically ordered in increasing complex-
ity [28, 19]. Ren et al. [37] consider curricula as a sequence
of environment interactions and proposes a self-paced mech-
anism that minimizes coverage penalty. Eimer et al.’s work
generates a sequence of contexts, not distributions, with
respect to their capacity of value improvement [12]. Klink
et al. [23, 24, 25, 26], Koprulu and Topcu [27] formulate the
generation of curricula as interpolations between distribu-
tions over contexts. Chen et al. [9] also study interpolations
between task distributions, but not under the self-paced RL
framework. Although they do not consider risk as a safety
metric, Turchetta et al. [41] proposes an approach for gen-
erating curricula in safety-critical applications. When the
student behaves dangerously, the teacher intervenes by acti-
vating reset controllers that take the student to a safe state.

RL under heavy-tailed task distributions. Some super-
vised learning algorithms have considered learning under
heavy-tailed distributions, such as in computer vision by
Long-tailed Image Net benchmark [30] and only a few
works that particularly concentrate on rare events or heavy-
tailed task distributions in RL. Frank et al. [15] devise an
importance sampling approach to alter probabilities of rare
events in simulation data for a tabular setting. Chan et al. [8]
is the first work that investigates the shortcomings of Deep
RL algorithms in rare events, sampled from Zipfian distri-
butions, which are heavy-tailed and fall under the family of
power law distributions. In addition, Zhuang and Sui [47]
propose no-regret RL algorithms for settings with rewards
that follow heavy-tailed distributions. To our knowledge, our
work is the first work that proposes an automated curriculum
learning method to address heavy-tailed task distributions.

Risk optimization in RL. Minimizing risk in RL aims to
learn policies that maximize performance while satisfying
safety requirements during training and test time [16]. To
this aim, Tamar et al. [39] proposes a policy gradient al-
gorithm for general coherent risk measures, among which
CVaR is very popular [40, 36, 44]. Greenberg et al. [17] fo-
cuses on CVaR optimization in a multi-task setting and
presents a risk-averse RL algorithm that combines risk-
optimizing policy gradient methods with CEM that identifies
and samples risky tasks. Although we take inspiration from
Greenberg et al. [17], we do not optimize risk in RL. Instead,
we utilize CEM in curriculum generation to sample rare and
risky contexts, namely, tasks, under context distributions
generated by primary curricula.



3 CONTEXTUAL MDP

We formalize our problem of interest as a contextual
RL problem, which uses contextual Markov decision pro-
cesses (CMDPs) to model a multi-task setting given a dis-
tribution over target contexts. Upon introducing these con-
cepts, we continue laying the foundations for self-paced
RL and cross-entropy methods, which we adopt to generate
primary and auxiliary curricula, respectively.

Definition 1 A contextual Markov decision process
(CMDP)M = ⟨S,A, C,M, γ⟩ is defined by a state space
S, an action space A, a context space C ⊆ Rn for n ∈ Z+,
a mapping from context space to Markov decision process
parameters M, and a discount factor γ.

A CMDPM represents a family of MDPs parameterized
by its contexts C. Given a context c ∈ C, we obtain an MDP
M(c) = ⟨S,A, pc, rc, p0,c, γ⟩, where S, A, and γ are the
same state space as in M, but its probabilistic transition
function pc, reward function rc, and initial state distribu-
tion p0,c depend on its context c. A policy π : S × C →
∆(A), which defines the behavior of an agent in a CMDP
M, outputs a probability simplex over action spaceA given
state s ∈ S and context c ∈ C. Note that the agent ob-
serves the context c. Following policy π, an agent col-
lects a trajectory τ = {(st, c,at, rt)}Tt=0 of length T with
an initial state s0 ∼ p0,c, states st+1 ∼ pc(·|st,at), ac-
tions at ∼ π(·|st, c), and rewards rt = rc(st,at) for times
steps t ∈ [T ].

Given a CMDPM and a target context distribution φ, i.e.,
a probability simplex ∆(C) over context space C, contex-
tual RL aims to learn a policy that maximizes the expected
discounted return in contexts c drawn from φ:

max
π

J(π, φ) = max
π

E
Pπ
c (τ ),φ(c)

[G(τ )], (1)

where G(τ ) =
∑T

t=0 γ
trc(st,at) is the discounted return

for trajectory τ , and Pπ
c (τ ) is the probability distribution of

trajectory τ induced by policy π in context c as: Pπ
c (τ ) =

p0,c(s0)
∏T

t=0 π(at|st, c)pc(st+1|st,at).

Contextual RL formulates an optimal decision-making prob-
lem that we attempt to solve in this paper. Particularly, we fo-
cus on heavy-tailed target context distributions under which
rare and risky contexts pose a challenge: An agent requires
more samples in a risky context, as it is non-trivial to ac-
quire an optimal behavior. When this context falls under
the tails of the target context distribution φ, simply using
the target distribution φ prevents the agent from obtaining
sufficiently many samples in a sample-efficient manner. In
addition, a learning algorithm can get stuck in local optima
while maximizing the expected discounted return J(π, φ)
by overlooking rare contexts. The literature on automated
curriculum generation fails to address this phenomenon by
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Figure 1: Point-mass environment with 1D context space:
Context c determines the position of the door.

solely focusing on exponentially-bounded target context dis-
tributions where contexts are either equally likely or not so
spread out, e.g. under a uniform or a normal distribution,
respectively (see Section 5.1 for a detailed discussion).

Problem statement. Given a CMDPM to describe the
parameterization of a set of tasks via contexts, and a heavy-
tailed target context distribution φ to specify their proba-
bility of occurrence, sample-efficiently learn a policy π that
maximizes the expected discounted return J(π, φ) inM.

Figure 1 shows an example domain, called the point-mass
environment, where a context specifies the position of the
door. The agent must reach the goal position by passing
through the door. An episode terminates when the agent hits
the wall or reaches the goal. The state space, i.e., all possible
positions of the agent, and the action space, i.e., forces
applied to the point mass along two axes, are independent
of the context. However, the context affects the transitions,
e.g., whether the agent ends up in the wall, and the rewards,
e.g., if the agent receives a reward for approaching the goal
position without hitting the wall.

For the point-mass environment, an example target context
distribution is a univariate normal distribution N (µ, σ2),
not heavy-tailed, with mean µ and standard deviation σ over
context values, i.e., door positions, in context space C.

4 CONTEXTUAL RL

In this section, we review two methods that aim to solve
CMDPs from different perspectives.

4.1 SELF-PACED RL

Self-paced RL [25] is an automated curriculum generation
approach that creates a sequence {ϱk}Kk=1 of context dis-
tributions ϱk to learn a policy π that maximizes J(π, φ)
given a CMDPM with a target context distribution φ. The
algorithm starts with an initial context distribution ϱ0, under
which easy contexts are more likely to occur. Looking at the



Algorithm 1 Self-paced RL [25]
Input: Target and initial context distributions φ, ϱ0
Parameters: Performance constraint δ, KL divergence
bound ϵ, number of curriculum iterations K, number of
rollouts per policy update M
Output: Policy π

1: Initialize policy π
2: for k = 1 to K do
3: ci ∼ ϱk−1, i ∈ [M ] ▷ sample contexts
4: Dk = {(ci, τ i)|τ i ∼ Pπ

ci(τ )}
M
i=1 ▷ collect trajectories

5: π ← Ψ(Dk, π) ▷ update policy with RL algorithm Ψ
6: ϱk ← Φφ(π,Dk, ϱk−1) ▷ new context distribution (2)
7: end for
8: return π

point-mass environment, an easy context has a door posi-
tioned in the middle of the room and thus yields the highest
return under an optimal policy.

Algorithm 1 provides more details about the method. At
iteration k, first, the algorithm samples contexts {ci}i=1

from the current context distribution ϱk−1 (Line 3), and
rolls out policy π to collect a set of trajectories Dk (Line 4).
Then, using Dk, policy π is updated via an RL algorithm
of choice. Finally, the algorithm generates the next context
distribution ϱk, which minimizes the KL divergence to the
target context distribution φ:

Φφ(π,Dk, ϱk−1) = arg min
ϱk

DKL(ϱk||φ)

s.t. J(π, ϱk) ≥ δ, (2)
DKL(ϱk−1||ϱk) ≤ ϵ,

where there are two constraints: 1) the expected discounted
return J(π, ϱk) under the next context distribution ϱk should
be equal to or greater than the desired level of performance δ,
and 2) the maximum KL divergence between the current con-
text distribution ϱk−1 and the next context distribution ϱk
should be less then the divergence bound ϵ. The perfor-
mance constraint guarantees that the agent collects suffi-
ciently large returns. In parallel, the KL divergence con-
straint prevents the curriculum from diverging too much
from the previous context distribution, which could result
in performance loss as past experience becomes less valu-
able. To estimate J(π, ϱk), self-paced RL uses the following
unbiased sample average given M trajectories:

J(π, ϱk) =
1

M

M∑
i=1

ϱk(ci)

ϱk−1(ci)

Ti∑
t=0

γtrci
(st,at),

where Ti is the length of the i-th trajectory. Equation (2) can
be solved via any constrained optimization algorithm, such
as trust-region, as adapted by Klink et al. [23, 24, 25].

Self-paced RL fails under heavy-tailed target context
distributions. The existing literature on self-paced RL

Algorithm 2 CEM variant [17]
Input: Context distribution ϱ, risk level qα, policy π
Parameters: Number of iterations I , batch size N , risk
level α, smoothing risk level β
Output: Auxiliary context distribution ϱ̃

1: ϱ̃← ϱ ▷ Initialize auxiliary context distribution
2: for i = 1 to I do
3: (cn, τn) ∼ Pπ

ϱ̃ (cn, τn), n ∈ [N ] ▷ collect trajectories
4: G ← {G(τn)}Nn=1 ▷ compute returns
5: ωn ← ϱ(cn)/ϱ̃(cn), n ∈ [N ] ▷ compute IS weights
6: q ← max {qα(G), qβ(G)} ▷ estimate quantile
7: ϱ̃← argmaxϱ̃′

∑N
n=1 ωn1G(τn)≤q log ϱ̃

′(cn) ▷ new
auxiliary context distribution

8: end for
9: return ϱ̃

merely focuses on exponentially-bounded target context dis-
tributions and generates a curriculum by taking the expected
discounted return J(π, ϱk) into account. Therefore, they do
not address the challenges caused by risky and rare contexts
that appear under heavy-tailed target context distributions.
We propose a risk-aware curriculum generation method that
tackles these challenges by integrating the cross entropy
method, which we explain next, into self-paced RL.

4.2 CROSS ENTROPY METHOD

The cross entropy method (CEM) is a generic approach to
rare event simulation and optimization [11]. We use CEM to
identify and sample risky contexts from the primary context
distribution, thus CEM does not aim to learn a policy.

We call a context c risky if the discounted return G(τ ) of
trajectory τ in c is below the CVaR of the return distribution.
CVaR is a popular risk measure defined as CVaRα(X) =
E[X|X ≤ qα(X)], where qα(X) = min{x|FX(x) ≥ α}
is the α-quantile of a random variable X with cumulative
distribution function FX . To adapt CVaR to our setting,
we take inspiration from Greenberg et al. [17] and define
CVaR as CVaRα(G|π, ϱ) = E[G|G ≤ qα(G|π, ϱ)], where
qα(G|π, ϱ) = min{g|FG|π,ϱ(g) ≥ α}. In other words,
CVaR is the expectation of the lowest qα-fraction of re-
turns obtained by policy π in contexts drawn from context
distribution ϱ.

Our goal is to sample context-trajectory pairs (c, τ ) from
the distribution Pπ

ϱ,α(c, τ ) = α−1F(τ , π, α)Pπ
ϱ (c, τ ),

where F(τ , π, α) = 1[G(τ ) ≤ qα(G|π)] and Pπ
ϱ (c, τ ) =

ϱ(c)Pπ
c (τ ) is the probability of drawing context c from con-

text distribution ϱ and collecting trajectory τ via policy π.
In short, given risk-level α, we want to find the distribution
Pπ
ϱ,α, that is the closest distribution to the tail of the distri-

bution Pπ
ϱ . We employ CEM to find a context distribution

ϱ̃ for which the distribution Pπ
ϱ̃ is similar to Pπ

ϱ,α. To this
end, CEM solves the following KL divergence minimization



problem:

ϱ̃ ∈ arg min
ϱ̃′

DKL(Pπ
ϱ,α||Pπ

ϱ̃′)

= arg max
ϱ̃′

E
(c,τ )∼Pπ

ϱ

[
F(τ , π, α) log ϱ̃′(c)

α

]
(3)

= arg max
ϱ̃′

E
(c,τ )∼Pπ

ϱ̃′

[
ω(c, τ )F(τ , π, α) log ϱ̃′(c)

α

]
,

where ω(c, τ ) = Pπ
ϱ (c,τ )/Pπ

ϱ̃′ (c,τ ) = ϱ(c)/ϱ̃′(c) is the im-
portance sampling (IS) weight for the context-trajectory
pair (c, τ ). As the distribution over which the expectation
is computed changes from Pπ

ϱ to Pπ
ϱ̃′ in Equation (3), an IS

weight is necessary. We provide the pseudocode of CEM
variant for sampling risky contexts by Greenberg et al. [17]
in Algorithm 2. Given a smoothing risk level β > α, Line 6
enables smooth updates of context distribution ϱ̃.

Integrating CEM into curriculum generation to sample
risky contexts. Greenberg et al. [17] use CEM to identify
and sample risky contexts under the target context distribu-
tion φ, which can be achieved in Algorithm 2 by replacing
input ϱ with φ. This method does not focus on curriculum
generation, hence it does not benefit from performance and
convergence advantages that come with curriculum learn-
ing in RL [31]. In the next section, we address this gap
by proposing a risk-aware curriculum generation method,
where CEM takes the context distribution ϱk from curricu-
lum iteration k to generate an auxiliary distribution ϱ̃k iden-
tifying the risky contexts under ϱk.

5 RISK-AWARE CURRICULUM
GENERATION

Building upon our problem of interest, contextual RL, we
first discuss the challenges that emerge with heavy-tailed
context distributions. Then, we present a risk-aware curricu-
lum generation algorithm that adopts self-paced RL and
CEM to address these challenges.

5.1 PITFALLS OF HEAVY-TAILED TASK
DISTRIBUTIONS

A probability distribution is heavy-tailed if its tails are not
exponentially-bounded; intuitively, they are heavier than the
tails of the exponential probability distribution [3]. Extreme
events or outliers are more likely to occur under heavy-
tailed distributions, as the area under the extreme regions
of the distribution is larger than the area under the tails of
an exponentially-bounded probability distribution [43]. In
addition, some moments of a heavy-tailed distribution do
not exist. For instance, a Cauchy distribution has no finite
moments of order 1 or higher, which causes its mean and
variance to be undefined. Therefore, a Cauchy distribution
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Figure 2: Pitfalls of heavy-tailed target context distributions
in the point-mass environment: (a) Non-risky and risky con-
texts for α = 0.2; and (b) distributions of returns for an
optimal policy under φNormal and φCauchy.

is described by its median l, i.e., location parameter, and
its median absolute deviation s, i.e., scale parameter. We
focus on Cauchy distributions since they look similar to
normal distributions; at the same time, they are considered
pathological due to their heavy-tailed nature. For a random
variable X drawn from a Cauchy distribution with location l
and scale s, the corresponding probability density function
is f(x|l, s) = 1/πs[1 + (x−l/s)2]−1.

Consider the point-mass environment from Figure 1 with
one-dimensional context space C = [−7, 7], corresponding
to possible door positions. In Figure 2, we analyze two tar-
get context distributions: a normal distribution φNormal with
mean µ = 3.5 and standard deviation σ = 0.7 (Figure 2a
left), and a Cauchy distribution φCauchy with location l = 3.5
and scale s = 0.7 (Figure 2a right).

Let us assume the reward is the negative of the exponen-
tial distance to the goal position rc(st,at)=− exp ∥st−g∥2,
where g is the position of the goal. Figure 2b shows
the distributions of discounted returns of the optimal pol-
icy with γ = 0.95, i.e., Pπ∗

φ,α, under normal (left) and
Cauchy (right) target context distributions, respectively.
The distribution of discounted returns under φCauchy is



Algorithm 3 Risk-aware curriculum generation (RACGEN)
Input: Target context distribution φ
Parameter: Initial context distribution ϱ0, performance constraint δ, KL divergence bound ϵ, number of curriculum
iterations K, number of rollouts per policy update M , smoothing risk level β, final risk level α, initial risk level α0, risk
level scheduling factor ρ
Output: Policy π

1: Initialize policy π.
2: ϱ̃0 ← ϱ0 ▷ initialize auxiliary context distribution
3: for k = 1 to K do
4: {cpri

i |c
pri
i ∼ ϱk−1}M

pri

i=1 ▷ sample primary contexts
5: {caux

j |caux
j ∼ ϱ̃k−1}M

aux

j=1 ▷ sample auxiliary contexts

6: Dpri
k ← {(c

pri
i , τ i)|τ i ∼ Pπ

c
pri
i

}M
pri

i=1 ▷ collect primary trajectories

7: Daux
k ← {(caux

j , τ j)|τ j ∼ Pπ
caux
j
}M

aux

j=1 ▷ collect auxiliary trajectories

8: π ← Ψ(Dk, π), for Dk = Dpri
k ∪ D

aux
k ▷ update policy with RL algorithm Ψ

9: ϱk ← Φφ(π,Dpri
k , ϱk−1) ▷ new context distribution (2)

10: q ← max{q̂αk−1({G(τ )|(c, τ ) ∈ Dpri
k }), q̂β({G(τ )|(c, τ ) ∈ Dk})} ▷ estimate quantile

11: Ω← {(ω, c, τ )|ω = ϱk(c)/ϱ̃k(c), (c, τ ) ∈ Dk} ▷ compute IS weights
12: ϱ̃k ← argmaxϱ̃′

∑
(ω,c,τ)∈Ω ω1G(τ)≤q log ϱ̃

′(c) ▷ new auxiliary context distribution
13: αk ← max{α, 1− (1−α)k/(ρK)} ▷ apply soft risk scheduling
14: end for

more spread than its counterpart under φNormal. Similarly,
the expectation E[G|π, φ] and conditional value-at-risk
CVaRα=0.2(G|π, φ) are further apart under the Cauchy dis-
tribution. Figure 2a supports this observation by illustrating
risky contexts, namely, contexts with returns lower than
CVaRα(G), in red and non-risky contexts in green. Risky
contexts under φCauchy pile up on the borders as we clip
every sample with respect to the boundaries of the context
space. In comparison, φNormal has risky contexts only under
its right tail, closer to its mean.

In a multi-task setting, generalization from one task to an-
other becomes challenging as the environment configuration
changes drastically. Similarly, in the point-pass environment,
generalizing the behavior learned from one context to an-
other requires the policy to learn how the reward function
and the transition function change with respect to the con-
text. If the contexts are further apart in the context space, the
generalization will be poorer in comparison to transferring
behavior to a context that is similar to the source [45].

Figure 2a highlights that risky contexts can cause chal-
lenges in generalization under a Cauchy distribution, as
the likely contexts and contexts under tails are quite dif-
ferent. Generalization is less critical under a normal distri-
bution, where 99.617% of the samples occur in the inter-
val between three standard deviations from the mean, i.e.,
I = [µ− 3σ, µ+ 3σ]. In contrast, in a Cauchy distribution
with l = 3.5 and s = 0.7, only 35.0828% of the samples
fall into the interval I = [l − 3s, l + 3s].

Therefore, we argue that to improve generalization under
heavy-tailed context distributions, an automated curriculum
learning algorithm should identify and oversample risky and
rare contexts.

5.2 RISK-AWARE CURRICULUM GENERATION

We propose a risk-aware curriculum generation algorithm,
RACGEN, that simultaneously creates two curricula: 1) a
primary curriculum, i.e., a sequence {ϱk}Kk=0 of context
distributions, via a self-paced RL algorithm, and 2) an auxil-
iary curriculum that identifies risky and rare contexts in the
primary curriculum via a variant of CEM.

Primary curriculum. Given a target context distribution φ,
a self-paced RL algorithm [25] generates a sequence of
context distributions {ϱk}Kk=0 by optimizing Equation (2).

Auxiliary curriculum. Upon generating the next primary
context distribution ϱk at iteration k of the primary curricu-
lum, the auxiliary curriculum outputs the next auxiliary con-
text distribution ϱ̃k. We propose a CEM variant that achieves
this by solving Equation (3) given the current risk-level αk

and the primary context distribution ϱk, which corresponds
to the reference context distribution in Algorithm 2.

Algorithm 3 presents the pseudocode for the RACGEN
method. In summary, at each iteration, the algorithm gen-
erates trajectories based on contexts sampled from the pri-
mary and auxiliary curricula and updates the policy and the
two curricula. More specifically, at iteration k, RACGEN
samples Mpri-many primary cpri

i and Maux-many auxil-
iary caux

j contexts from the current primary ϱk−1 and auxil-
iary ϱ̃k−1 distributions, respectively (Lines 4 and 5). Then,
rolling out policy π, it collects two sets of trajectories: pri-
mary Dpri

k and auxiliary Daux
k (Lines 6 and 7). The union Dk

of these sets are used to update policy π via an RL algorithm
of choice (Line 8). To generate the next primary context dis-
tribution ϱk, RACGEN optimizes Equation (2) with the
primary trajectory set Dpri

k (Line 9), which completes the
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Figure 3: Point-mass environments from contexts sampled at iterations k ∈ {0, 20, 75, 195}, which determine the position
and the width of the door. Figures 3a and 3b demonstrate how primary and auxiliary contexts (green and red dots, respectively)
evolve during the training. The shade of a dot indicates the curriculum iteration, whereas darker shades are of later iterations.

primary curriculum update. The auxiliary curriculum update
begins with estimating a risk quantile q (Line 10). Following
Greenberg et al.’s approach [17], RACGEN uses a smooth
quantile update (Line 10). Then, RACGEN computes IS
weights of sampled context-trajectory pairs (c, τ ) ∈ Dk

(Line 11). Finally, it generates the next auxiliary context
distribution ϱ̃k using the estimated quantile q (Line 12), note
that this optimization problem has a closed-form solution
for some probability distributions, such as a normal or a
Cauchy distribution.

Soft-risk scheduling. RACGEN uses soft-risk scheduling
to linearly decrease αk from an initial risk level α0 to a final
risk level α ≤ α0. Originally, Greenberg et al. [17] proposes
soft-risk scheduling for CVaR policy gradient algorithms
to enable policies to learn in contexts with high returns.
In contrast, the soft-risk scheduling in RACGEN allows
the generation of auxiliary context distribution that focuses
on contexts with high returns at first, which allows faster
learning at the initial phase of the training. Then, as αk

decreases, risky and rare contexts become the focal point of
the auxiliary curriculum. Our empirical results evidence that
soft-risk scheduling facilitates not only faster performance
increase, but also higher returns at the training’s end.

6 EMPIRICAL RESULTS

We set up experiments in two domains to investigate the
benefits of RACGEN under heavy-tailed target context dis-
tributions. We demonstrate the evolution of the primary
and auxiliary curricula. Furthermore, we consider two per-
formance metrics: 1) the distribution of discounted re-
turns (G(τ )) with respect to the target context distribution
and 2) its expectation (J(π, φ)). We compare RACGEN
with six state-of-the-art algorithms for automated curricu-
lum generation: CURROT [26], SPDL [25], PLR [21],
VDS [46], GOALGAN [14], and ALP-GMM [33]. Ap-

pendix A provides more details about each algorithm. Fi-
nally, we include two baseline methods: DEFAULT and
DEFAULT-CEM. DEFAULT draws contexts from the tar-
get context distribution without generating a curriculum.
DEFAULT-CEM extends DEFAULT with an auxiliary cur-
riculum generated by inputting the target context distribu-
tion to CEM (Algorithm 2). These baselines serve as abla-
tion studies to understand whether generating a curriculum
indeed boosts learning performance and speed, and whether
targeting rare and risky contexts without a primary curricu-
lum is sufficient, respectively.

6.1 POINT-MASS ENVIRONMENT

We begin with a point-mass environment (Figure 1), that has
a two-dimensional context space C = [−7, 7] × [0.5, 14],
where the context determines the position and the width
of the door. Klink et al. [23, 24, 25] study settings where
the target context distribution is Gaussian and narrow, refer-
ring to small variance, whereas Klink et al. [26] focuses on
a bi-modal target context distribution with small variance
around each mode. In contrast, the target context distribu-
tion in our experimental setting is a Cauchy distribution
with location l = (3.5, 0.5) and scale s = diag(0.72, 0.52).
The initial context distribution is a Cauchy distribution with
location l = (0, 4.25) and scale s = diag(22, 1.8752). Ap-
pendix B.1 provides more details. The code to reproduce
the experiments is available online1.

Curriculum generation. Figures 3a and 3b show the
progress of the primary and auxiliary context distributions
during training, respectively. The primary curriculum starts
sampling easy contexts where the door is in the center of
the room, and its width is high. The auxiliary curriculum

1https://github.com/cevahir-koprulu/
risk-aware-curriculum-generation

https://github.com/cevahir-koprulu/risk-aware-curriculum-generation
https://github.com/cevahir-koprulu/risk-aware-curriculum-generation
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Figure 4: Expected discounted return with respect to the
target context distribution in the point-mass environment.
The bold lines show the median and the shaded regions
cover the first and third quartiles of 10 independent runs.

follows a similar pattern as α0 = 1, which prevents it from
identifying risky and rare contexts, as the objective is to al-
low the agent to learn the task as quickly as possible. As the
training continues, the primary curriculum generates context
distributions ϱk that approach to the target context distribu-
tion φ. In comparison, as αk decreases linearly, the auxiliary
curriculum outputs context distributions ϱ̃k that identify the
rare and risky contexts under the tails of their correspond-
ing primary context distributions. Figure 3b validates this
argument as the last auxiliary contexts (darker shades) are
centered around the context c ≈ (5.4, 0.9), approximately
3 median standard deviations away from the median of the
target context distribution along the x-axis (door position).

Performance progression. Figure 4 shows the progres-
sion of the discounted expected return in the target context
distribution during training. We introduce two algorithms
in this experiment: RACGEN-N and SPDL-N, which gen-
erate normal context distributions only. We evaluate these
algorithms because the original SPDL algorithms have a
Gaussian assumption [23, 24, 25]. In contrast, RACGEN
and SPDL assume the target distribution is Cauchy. We ob-
serve that although DEFAULT and DEFAULT-CEM achieve
higher returns faster than other algorithms, they stop improv-
ing at the early phases of the training. RACGEN attains the
highest expected returns and even continues to improve to-
ward the end of the training. CURROT and RACGEN-N
perform similarly, despite the fact that CURROT has no
risk-aware mechanism. SPDL and SPDL-N also achieve
similar expected discounted returns, though Figure 5 shows
that SPDL performs slightly better due to having the cor-
rect assumption about the type of the context distributions.
ALP-GMM, PLR, VDS, and GOALGAN fail to learn poli-
cies that receive higher expected returns than DEFAULT and
DEFAULT-CEM in the median.

RAC
GEN

RAC
GEN-N

CUR
ROT

SPDL SPDL-N ALP
-GMM

Default
-CEM

Default PLR VDS Goal
GAN

Algorithm

0

2

4

6

8

10

D
is

co
un

te
d 

R
et

ur
n

Figure 5: Distribution of the discounted return with respect
to contexts drawn from the target context distribution in
the point-mass environment over 10 independent training
runs. Box plots show the minimum, the first quartile, the
median, the third quartile, and the maximum of all returns,
from bottom-to-top, whereas the rhombus data samples cor-
respond to outlier values.

Final performance. Figure 5 shows that RACGEN out-
performs all state-of-the-art algorithms, their variations, and
the baselines in the experiment. Furthermore, it achieves
returns that are significantly higher than the returns of all
algorithms according to a Welch’s t-test with p < 0.0001.

6.2 LUNAR LANDER ENVIRONMENT

In the lunar lander environment [7], the agent must land a
pod on planets with varying gravity and wind disturbances.
We consider a context space C = [−12,−0.01]× [0, 10] that
determines the gravity and wind power. We use a Cauchy
target context distribution with location l = (−7, 5) and
scale s = diag(1, 1). The initial context distribution is a
Cauchy distribution with location l = (−3.7, 0.) and scale
s = diag(0.252, 0.252), where the median corresponds to a
no wind condition in Mars. More details on Appendix B.2.
Our analysis focuses on the final performance (Figures 6
and 7), and Appendix B.3 provides the training curves.

Final performance. Figure 6 demonstrates the distribu-
tion of the discounted return obtained by the final poli-
cies in contexts drawn from the target context distribution.
By identifying rare and risky contexts via a CEM module,
RACGEN and DEFAULT-CEM achieve discounted return
distributions significantly higher than DEFAULT and the rest
with p < 0.01 and p < 0.0001, respectively, according to a
Welch’s t-test. RACGEN has a higher median and a tighter
range than DEFAULT-CEM. In addition, low outlier values
are not as spread out as in DEFAULT-CEM, which is an
informative observation because outlier low returns particu-
larly occur in rare and risky contexts. Therefore, RACGEN
is advantageous over DEFAULT-CEM by generating a pri-
mary curriculum in addition to an auxiliary curriculum.
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Figure 6: Distribution of the discounted return with respect
to contexts drawn from the target context distribution in the
lunar lander environment over 5 independent training runs.

Performance in risky contexts. We also note that
RACGEN does not achieve the highest maximum dis-
counted return. This is likely because RACGEN may over-
look more trivial contexts by allocating a portion of its
sample budget to auxiliary ones, which are non-trivial and
yield low-return. In addition, due to an average of 65% suc-
cess rate, the lunar lander is a challenging domain under
the given target context distribution, which likely results in
policies trained via RACGEN to attend risky contexts more.
Nevertheless, in terms of first and third quartiles, median,
and minimum values, we conclude that RACGEN outper-
forms the state-of-the-art methods and the baselines in this
environment under a heavy-tailed target context distribution.

Performance profiles. Figure 7 further demonstrates that
RACGEN achieves higher returns in high and medium-risk
contexts than the remaining methods. The figure shows the
fraction of contexts (y-axis) where an algorithm learns a
policy that achieves a return higher than the return r (x-
axis). The curves show the median over 5 runs. First, we
notice that RACGEN almost always achieves returns higher
than −46, with DEFAULT following closely and the rest
achieving lower returns in high-risk contexts. At r = −30,
DEFAULT starts to perform worse than RACGEN, which
supports our previous argument that RACGEN achieves the
highest minimum returns. The curve of RACGEN stays on
the top until r = 62, which demonstrates that RACGEN
performs the best in most of the contexts. However, as we
previously discussed in Figure 6, RACGEN does not yield
the highest returns in low-risk contexts since its curve goes
under the others in terms of the portion of contexts with high
returns, more specifically for returns r ∈ [62, 74]∪ [82, 100].

7 CONCLUSIONS

In this paper, we investigate how to generate curricula in a
multi-task setting where the task distribution has a heavy tail.
We propose the risk-aware curriculum generation method
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Figure 7: Performance profiles of evaluated algorithms in
the lunar lander environment: the fraction of episodes where
the final policies achieve discounted returns greater than r.
It presents the median over 5 independent training runs.

(RACGEN) that oversamples rare and risky tasks, improv-
ing the agent’s performance in such tasks. Our empirical
evaluation shows that, under a heavy-tail task distribution,
RACGEN outperforms state-of-the-art curriculum gener-
ation methods that do not take the heavy tail distributions
into account. Furthermore, RACGEN has a fast convergence
rate, comparable to the state-of-the-art curriculum genera-
tion methods, despite deliberately sampling risky tasks.

Limitations. The algorithms that RACGEN employ to
generate primary and auxiliary curricula, SPDL and CEM,
respectively, search over a fixed parametric family of dis-
tributions. Therefore, RACGEN is limited to producing
primary and auxiliary context distributions of the same para-
metric type. Given an arbitrary target context distribution,
RACGEN needs to assume that it belongs to a certain para-
metric family to generate primary and auxiliary context dis-
tributions. There, it is likely that the likelihood of some pri-
mary or auxiliary contexts would be over or under-estimated.
As a result, RACGEN may return sub-optimal policies.

Future Work. We are planning to extend RACGEN to
address arbitrary target context distributions. CURROT
addresses such limitation of SPDL by replacing KL diver-
gence with Wasserstein distance. Similarly, the generalized
version of CEM [6] extends CEM for arbitrary distributions.
We can combine CURROT and the generalized CEM to
tackle the limitations of RACGEN.
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