
Act-Then-Measure: Reinforcement Learning for Partially Observable
Environments with Active Measuring

Merlijn Krale, Thiago D. Simão, Nils Jansen
Radboud University, Nijmegen

Institute for Computing and Information Sciences
{merlijn.krale, thiago.simao, nils.jansen}@ru.nl

Abstract

We study Markov decision processes (MDPs), where agents
control when and how they gather information, as formalized
by action-contingent noiselessly observable MDPs (ACNO-
MPDs). In these models, actions have two components: a
control action that influences how the environment changes
and a measurement action that affects the agent’s obser-
vation. To solve ACNO-MDPs, we introduce the act-then-
measure (ATM) heuristic, which assumes that we can ignore
future state uncertainty when choosing control actions. To de-
cide whether or not to measure, we introduce the concept of
measuring value. We show how following this heuristic may
lead to shorter policy computation times and prove a bound
on the performance loss it incurs. We develop a reinforce-
ment learning algorithm based on the ATM heuristic, using a
Dyna-Q variant adapted for partially observable domains, and
showcase its superior performance compared to prior meth-
ods on a number of partially-observable environments.

Introduction
In recent years, partially observable Markov decision pro-
cesses (POMDPs) have become more and more widespread
to model real-life situations involving uncertainty (Kormu-
shev, Calinon, and Caldwell 2013; Lei et al. 2020; Sun-
berg and Kochenderfer 2022). Active measure POMDPs
are an interesting subset of these environments, in which
agents have direct control over when and how they gather
information, but gathering information has an associated
cost (Bellinger et al. 2021). For example, maintenance of
a sewer system might require regular inspections (Jimenez-
Roa et al. 2022), or appropriate healthcare might require
costly or invasive tests (Yu et al. 2023). In both cases, the risk
or cost of gaining information needs to be weighted against
the value of such information.

Reinforcement learning (RL) is a promising approach to
handling problems where we must actively gather infor-
mation. However, due to the complexity of POMDPs, suc-
cesses with RL methods in partially observable settings are
still limited (Dulac-Arnold et al. 2021). One may circum-
vent this by focusing on subsets of POMDPs which have
certain exploitable properties. For example, Guo, Doroudi,
and Brunskill (2016) proposed an efficient RL algorithm for

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

small-horizon POMDPs, Simão, Suilen, and Jansen (2023)
investigates offline RL where finite histories provide suffi-
cient statistics. Similarly, this paper focuses on a subset of
active measure POMDPs with complete and noiseless ob-
servations, called action contingent noiselessly observable
MDPs (ACNO-MDPs; Nam, Fleming, and Brunskill 2021).

For ACNO-MDPs, two RL algorithms already exist. The
first, active measure RL (AMRL-Q, Bellinger et al. 2021),
is computationally inexpensive but uses a most-likely state
approximation and always converges to non-measuring poli-
cies, causing poor performance in stochastic environments.
The second, observe-then-plan (Nam, Fleming, and Brun-
skill 2021), performs well in smaller stochastic environ-
ments, but its reliance on general POMDP planners for pol-
icy optimization makes it computationally expensive. There-
fore, we investigate lightweight and high-performing RL
methods in stochastic ACNO-MDPs.

In this paper, we propose a method for stochastic ACNO-
MDPs1 in which we explicitly use knowledge of the set-
ting for both learning and exploitation. To this end, we pro-
pose the act-then-measure heuristic, inspired by the QMDP
approach (Littman, Cassandra, and Kaelbling 1995), which
drastically decreases policy computation times. Since our
method relies on a heuristic to compute a policy, we also
investigate how much performance we can lose compared
to the optimal policy, for which we prove an upper bound.
We then describe an algorithm based on Dyna-Q, which
uses this heuristic for RL in ACNO-MDPs. We compare
it empirically to previous methods in both an environ-
ment designed to test whether algorithms can accurately
determine the value of measuring and a standard RL envi-
ronment. In both environments, our algorithm outperforms
AMRL-Q and observe-then-plan while staying computa-
tionally tractable for much bigger environments than the lat-
ter.

Contributions. The main contributions of this work are:
1) identifying limitations of previous RL approaches for
ACNO-MPDs, 2) introducing the act-then-measure (ATM)
heuristic, 3) introducing the concept of measuring value,
and 4) implementing Dyna-ATMQ, an RL algorithm for AC-
NO-MDPs following the ATM heuristic.

1Stochastic MDPs are the opposite of deterministic MDPs
where all probability distributions are Dirac.

Proceedings of the Thirty-Third International Conference on Automated Planning and Scheduling (ICAPS 2023)

212

Agent

ã = (a, m)

r = r – c(m)

MDP

a r,s

ACNO-MDP

o ∈{s, ⊥}

~

Figure 1: Agent-environment interaction in an ACNO-MDP.
The agent performs a control action a and measurement m
at each time step t. The internal environment state is defined
by an MDP and affected only by control actions. After each
step, the agent receives a scalarized reward r̃=r−C(m) and
observation o ∈ {s,⊥} (with o=s ⇐⇒ m=1).

Background
This section gives a formal description of ACNO-MDPs,
then describes and analyzes RL methods for the setting.

ACNO-MDPs
We define our problem as an action-contingent noiselessly
observable MDP (ACNO-MDP; Nam, Fleming, and Brun-
skill 2021). An ACNO-MDP is defined by a tuple M =
(S, Ã=A×M,P,R,C,Ω, O, γ), where (S,A, P,R, γ) are
the components of a standard MDP: S is the state space,
A is the action space, P (s′ | s, a) is the transition func-
tion, R(s, a) is the reward function and γ ∈ [0, 1] is
the discount factor. However, in the ACNO-MDP frame-
work Ã consists of pairs of control actions and mea-
surements, taking the form ã=⟨a,m⟩ ∈ A × M , where
M={not observe, observe}={0, 1}. A control action a ∈
A affects the environment, while the measurement choice
m ∈ M only affects what the agent observes. Following
the typical notation from POMDPs, Ω is the observation
space and O the observation function, so O(o | s′, ⟨a,m⟩)
is the probability of receiving observation o ∈ Ω when tak-
ing measurement m and action a, after transitioning to the
state s′. In ACNO-MDPs all measurements are complete and
noiseless, so we can define Ω=S ∪ {⊥}, where ⊥ indicates
an empty observation. Then, the observation function is de-
fined as O(o | s′, ⟨a, 1⟩)=1 ⇐⇒ o=s′, and 0 otherwise.
Similarly, O(o | s′, ⟨a, 0⟩)=1 ⇐⇒ o=⊥, and 0 other-
wise. Measuring has an associated costC(0)=0 andC(1)=c
(with c ≥ 0), which gets subtracted from our reward, giving
us a scalarized-reward r̃t=R(st, at)− C(mt).

Agent-environment interactions for ACNO-MDPs are vi-
sualized in Figure 1. Starting in some initial state s0, for
each time-step t the agent executes an action-pair ⟨at,mt⟩
according to a policy π. In general, these policies are de-
fined for a belief state bt, a distribution over the states rep-
resenting the probability of being in each state of the en-
vironment, summarising all past interactions. After execut-
ing ⟨at,mt⟩ in st, the environment transitions to a new
state st+1 ∼ P (· | st, at), and returns to the agent a re-
ward rt=R(st, at), a cost ct = C(mt) and observation
ot+1 ∼ O(· | st+1, ⟨at,mt⟩). The goal of the agent is

S0

S1

S2
…
.

a

1/N+ε

1/N-ε

1/N

Figure 2: An ACNO-MDP where the value Q(s0, ⟨a, 0⟩)
based on the most-likely successor state can be made arbi-
trarily inaccurate. In this example, using a most likely state
means considering only s1, even though the probability of
reaching this state is only 1/N + ϵ, with N the number of
successor states (which is only bounded by |S|), neglecting
the probability of reaching the remaining successor states.

to compute a policy π with the highest expected total dis-
counted scalarized-reward V (π,M) = Eπ,M [

∑
t γ

tr̃t] .
In this paper, we will mainly focus on reinforcement

learning in ACNO-MDPs. We assume the agent only has ac-
cess to the total number of states and the signals returned
by the environment in each interaction, but otherwise has no
prior information about the dynamics of the environment.

Q-learning for ACNO-MDPs
Bellinger et al. (2021) propose to solve the ACNO-MDP
problem using an adaptation of Q-learning (Watkins and
Dayan 1992). To choose the best action pair, the agent es-
timates both the transition probability function and value
functions with tables P̂ and Q of sizes |S × A × S| and
|S × Ã|, respectively. Both are initialized uniformly, except
that all actions with m = 1 are given an initial bias in Q to
promote measuring in early episodes.

Beginning at the initial state, for every state st the agent
executes an ϵ-greedy action-pair ⟨at,mt⟩ according to Q.
When mt = 1, the successor state s′ = st+1 is observed so
the algorithm updates the transition probability P̂ (· | st, at).
Whenmt = 0, AMRL-Q does not update P̂ and assumes the
successor state is the most likely next state according to P̂ :

s′ = arg max
s∈S

P̂ (s | st, at).

Using the reward rt and the (potentially estimated) suc-
cessor state s′, AMRL-Q updates both Q(st, ⟨at, 0⟩) and
Q(st, ⟨at, 1⟩), as follows:

Q(st,⟨at,m⟩)← (1− α)Q(st, ⟨at,m⟩)

+ α

[
rt − C(m) + γ max

a′,m′
Q(s′, ⟨a′,m′⟩)

]
.

(1)

Although AMRL-Q is conceptually interesting and has
very low computation times, in practice the algorithm has
some considerable shortcomings:

AMRL-Q does not measure after convergence. Apart
from its ϵ-greediness, for any state s AMRL-Q only takes
a measuring action ã=⟨a, 1⟩ if ã has the highest Q-value.

213

In particular, this means that Q(s, ⟨a, 1⟩) > Q(s, ⟨a, 0⟩)
must hold. However, these Q-values get updated simultane-
ously with the same rt and s′, with (rt − C(m)) always
lower for m=1. Therefore, Q(s, ⟨a, 1⟩) always converges to
a value lower than Q(s, ⟨a, 0⟩). This means AMRL-Q only
converges to non-measuring policies, which may be subop-
timal for stochastic environments where the optimal policy
requires taking measurements.

AMRL-Q ignores the state uncertainty. As visualized in
Figure 2, the most-likely successor state used in AMRL-Q
can give arbitrarily inaccurate approximations of the value
of the current state. Apart from sub-optimal action selection,
this may also cause inaccuracies in the model in later steps,
since AMRL-Q makes no distinction between measured and
non-measured states for model updates.

Solving ACNO-MDP via POMDPs
Nam, Fleming, and Brunskill (2021) introduce two frame-
works for solving tabular ACNO-MDPs. The first, named
observe-before-planning, has an initial exploration phase in
which the agent always measures to learn an approximated
model. After this phase, a generic POMDP-solver computes
a policy based on the approximated model. The second
framework, named observe-while-planning, starts by using a
POMDP-solver on some initial model and updates the model
on-the-fly based on the measurements made. For both frame-
works, a specific implementation is tested, using episodic
upper lower exploration in reinforcement learning (EULER;
Zanette and Brunskill 2019) for the exploration phase and
partially observable Monte-Carlo planning (POMCP; Sil-
ver and Veness 2010) as a POMDP-solver. Both algorithms
outperform the tested generic RL method for POMDPs, with
observe-before-planning performing slightly better overall.
We, therefore, focus on this framework in this paper. Apart
from some more specific disadvantages of using POMCP for
ANCO-MDPs (Krale, Simão, and Jansen 2023, Appendix
B), we note one general shortcoming of this framework.

Observe-before-planning depends on a POMDP-solver.
While observe-before-planning uses the ACNO-MDP struc-
ture in its exploration phase, for exploitation, it relies only
on a generic POMDP-solver. These solvers have high com-
putational complexity, which limits in which environments
they can be employed. In contrast, a method that uses the
ACNO-MDP structure (where only control actions affect the
underlying state) could, in principle, solve larger problems.

The Act-Then-Measure Heuristic
In this section, we propose the act-then-measure (ATM)
heuristic for approximating optimal policies in ACNO-
MDPs. Intuitively, this heuristic is based on the observa-
tion that control actions and measurements have very dif-
ferent effects, which implies it might be desirable to choose
them using separate processes. Therefore, inspired by the
QMDP heuristic (Littman, Cassandra, and Kaelbling 1995),
our heuristic chooses a control action, assuming all (state)
uncertainty will be resolved in the next state(s).

Following this heuristic, we do not need to consider mea-
surements while deciding control actions, since measuring

Decide a

Decide m

Perform (a, m)

Update b

MDP
(Model)

ACNO-MDP
(Model)

Agent

(a, m)(r, o)

ACNO-MDP (Real)

~

Figure 3: The control-loop for solving ACNO-MDPs using
the act-then-measure heuristic. At each time step, a control
action a is chosen according to the current belief state b, as
though it is a belief over MDP states. Then, a measurement
m is picked without ignoring the state uncertainty, (a,m) is
executed, and the belief state b is updated accordingly.

only affects state uncertainty. This means we can use a basic
control loop (Figure 3), in which we choose control actions
before measurements.

Evaluating Control Actions
To choose control actions, we can approximate future re-
turns using an MDP approximation:

Q(b, a) ≈
∑
s∈S

b(s)QMDP(s, a), (2)

where QMDP(s, a) is the value of taking action a in state s
and following the optimal policy of the underlying MDP af-
terward, and b denotes the current belief, so b(s) is the prob-
ability that the current state is s. Since, in general, MDPs
are more tractable than POMDPs, this approximation allows
for a more efficient policy computation than POMDP-based
methods like observe-then-plan. At the same time, in con-
trast to AMRL-Q, belief states are not approximated, which
means current state uncertainty is fully considered and mea-
surements can be made after convergence.

Evaluating Measurements
To use the ATM heuristic, we need a principled way to de-
termine whether to take a measurement. Therefore, we re-
quire the ability to estimate the value of a measurement. For
this, we start by defining the value function QATM(b, ã) as
the value for executing ã in belief state b, assuming we fol-
low the ATM-heuristic, i.e. that we choose control actions
according to Equation 2. We will define QATM(b, ã) using
Bellman equations. For readability, we first introduce the
following notations:

b′(s′|b, a) =
∑
s∈S

b(s)P (s′|s, a), and
•

max
ã∈Ã

= max
m∈M

max
a∈A

,

214

where b′(s′|b, a) represents the probability of transitioning
to state s′ when taking action a in the current belief state b,
and

•
max describes the optimal action pair if the control ac-

tion is decided before the measurement.
We note that the form of the Bellman equations for

QATM(b, ã) depends on the current measuring action. If mea-
suring, we can use the information we gain to choose the
next optimal action to take, giving us the following:

QATM(b, ⟨a, 1⟩) = r̂−c+γ
∑
s′∈S

b′(s′|b, a) •
max
ã∈Ã

QATM(s′, ã),

(3)
with r̂ the expected reward of taking action a in belief state b
and QATM(s, ã) the Q-value of a belief state with b(s) = 1.
If not measuring, we can only base our next action on the
expected next belief. We may then define the belief-optimal
action ãb as follows:

ãb = arg
•

max
ã∈Ã

QATM(bnext(b, a), ã)

= arg
•

max
ã∈Ã

∑
s′∈S

b′(s′|b, a)QATM(s′, ã),
(4)

where the second equality follows from the fact that control
actions are chosen according to Equation 2, and is proven
in Appendix C (Krale, Simão, and Jansen 2023). Using this,
we find the following Bellman equation for m = 0:

QATM(b, ⟨a, 0⟩)=r̂ + γ
∑
s′∈S

b′(s′|b, a)QATM(s′, ãb). (5)

Based on Equations 3 and 5, we define the measuring
value MV(b) as the difference between these two Q-values:

MV(b, a) = QATM(b, ⟨a, 1⟩)−QATM(b, ⟨a, 0⟩)

=−c+γ
∑
s∈S

b′(s|b, a)
[

•
max
ã∈Ã

QATM(s, ã)−QATM(s, ãb)

]
.

(6)

To illustrate, suppose we predict a next belief state b′ as
given in Figure 4, and for simplicity assume γ = 1. If we
choose not to measure, the belief optimal action for b′ is a0,
yielding a reward of 0.8 on average. If instead we do take
a measurement, we can decide to take action a0 if we reach
state s0 and action a1 if we reach state s1, yielding a return
of 1 − c. Following Equation 6, the measuring value is thus
1 − c − 0.8 = 0.2 − c, meaning it is worth taking a mea-
surement if c ≤ 0.2. Generalising this example, we find the
following condition for taking measurements:

mMV(b, a) =

{
1 if MV(b, a) ≥ 0;

0 otherwise,
(7)

and can define a policy following the ATM heuristic as:
πATM(b) = ⟨max

a∈A
Q(b, a),mMV(b,max

a∈A
Q(b, a))⟩, (8)

with Q(b, a) as defined in Equation 2.
In practice, calculating QATM(s, ã) in Equations 3 and 5

for all possible next belief states can be computation-
ally intractable. An intuitive (over-)approximation to use is
QATM(s, ⟨a,m⟩) ≈ QMDP(s, a), in which case Equation 6
would likely give an overestimation of MV, leading to more
measurements than required.

S1

a0

a1

P = 0.8

R=0

R=1

S0

a0

a1

R=1

R=0

P = 0.2

Figure 4: An example of a simple belief state.

Performance Regret of ATM
Now that πATM is fully defined, we are interested in its per-
formance loss as compared to an optimal policy π∗ not re-
stricted by Equation 2. We first prove the following lemma:
Lemma 1. Given a fully known ACNO-MDP M. De-
fine πATM as in Equation 8, and π′

ATM as: π′
ATM(b) =

⟨maxa∈AQ(b, a), ψ(b)⟩, with ψ : b→ m. For any choice of
ψ, the following holds:

V (πATM,M) ≥ V (π′
ATM,M). (9)

Intuitively, this lemma states that mMV is the optimal
way of deciding m when following the ATM heuristic. Ap-
pendix C (Krale, Simão, and Jansen 2023) provides the
proof. Using this lemma, we can find an upper bound for
the performance loss of πATM:
Theorem 1. Given a fully known ACNO-MDPM with an
optimal policy π∗. The performance loss for the policy fol-
lowing the act-then-measure heuristic πATM (Equation 8)
has the following minimal upper bound:

V (π∗,M)− V (πATM,M) ≤
∑
t

γtc. (10)

Proof. We start by proving that Equation 10 is indeed an
upper bound. For this, we introduce M0, an ACNO-MDP
with the same dynamics and reward function asM, but with
c = 0. InM0, always measuring and taking control actions
in accordance to QMPD is an optimal policy. Let πMeasure be
that policy, than the following holds:

V (πMeasure,M0) = V (π∗,M0). (11)

Since the behavior of πMeasure is independent of c, we can
relate the expected return of this policy inM0 to that inM:

V (πMeasure,M) = V (πMeasure,M0)−
∑
t

γtc. (12)

Furthermore, we notice πMeasure follows the control actions
given by maxa∈AQ(b, a). Thus, via Lemma 1:

V (πATM,M) ≥ V (πMeasure,M). (13)

Lastly, we note that for a given policy, the expected return in
M0 can never be lower than that inM. Then, in particular:

V (π∗,M) ≤ V (π∗,M0). (14)

Substituting Equations 12 and 14 into Equation 11, then sub-
stituting π∗

ATM for πMeasure following Equation 13, we find
exactly our upper bound.

To prove the given bound is minimal, it suffices to show
an ACNO-MDP where the bound is exact, which means no

215

Sa

Sb

S-

S0

Sεa

a

a

b

b

b

a,b

R=1-ε

R=1

R=1

0.5

0.5 R=0

Figure 5: An example where the act-then-measure heuristic
can fail for ACNO-MPDs. We assume c ∈ [0, 0.5] and ϵ is
infinitesimally small.

lower bound can exist. Such an ACNO-MDP is shown in
Figure 5. Using the ATM heuristic, taking action b in state
s0 is optimal since both sa and sb yield an (infinitesimally)
higher expected return than sϵ given full state information.
However, after this action the optimal policy would be to
measure every step, leading to a lost return of

∑
t γ

tc.

In practice, the performance loss of using the ATM heuris-
tic depends on the environment under consideration. We
note the ATM assumption holds in deterministic environ-
ments with a single initial state, and has limited impact in en-
vironments where c is small relative to the episodic reward.
In contrast, we recall that the AMRL-Q approach does not
converge to policies that actively gather information. This
means its performance loss with respect to the baseline pol-
icy is unbounded, even when c is small. Observe-before-
planning does always converge to π∗, but in practice may
be computationally intractable.

Dyna-ATMQ: an ATM-based RL Algorithm
for ACNO-MDPs

To test both the ATM heuristic and measuring value, we
implement dynamic act-then-measure Q-learning (Dyna-
ATMQ), an RL algorithm specifically designed for ACNO-
MDPs. A high-level version of the learning loop for an
episode is given by Algorithm 1. The supplemental mate-
rial (Krale, Simão, and Jansen 2023, Appendix A) presents
the complete pseudo-code, while an explanation of all parts
of the algorithm is given next.

Belief states. To deal with partially unknown states, we
implement discretized belief states bt, with bt(s) the esti-
mated probability of being in state s at time t. After measur-
ing, belief states are deterministic, i.e.

bt+1(s) =

{
1 if s = st+1;

0 otherwise.
(15)

After a non-measuring action, we instead sample a new be-
lief state, with bt+1(s) ∼

∑
s′∈S bt(s

′)P (s|s′, a).
Transition model. To estimate our transition probabili-
ties, we apply the Bayesian MDP approach as introduced
by Dearden, Friedman, and Andre (1999). In this frame-
work, a transition function P (· | s, a) is given by a

Algorithm 1: Dyna-ATMQ

Initialise transition model P , value function Q, belief
state b0;
while episode not completed do

Choose control action at according to Q ▷ Equation 18
Choose mt according to at ▷ Equation 23
Execute ãt = ⟨at,mt⟩
Receive reward rt and observation ot
Determine next belief state bt+1 ▷ Equation 15
Update P according to ot ▷ Equations 16 and 17
Update Q according to rt and P ▷ Equation 19
Update Q using model-based training

end while
return

∑
t γ

trt

Dirichlet distribution D(s, a), as parameterised by α⃗ =
{αs,a,s0 , αs,a,s1 , ...}. In the standard MDP-setting, αs,a,s′ is
given by a (uniform) prior, plus the number of times a transi-
tion has already occurred. For the ACNO-MDP setting, we
change this to the number of times it has been measured.
Thus, at every step we update our model as follows:

αs,a,s′ ←

αs,a,s′ + 1 if at−1 = a,mt = 1,

bt(s) = 1, bt+1(s
′) = 1;

αs,a,s′ otherwise,
(16)

and define estimated transition probabilities as:

P (s′ | s, a) = E [s′ | D(s, a)] =
αs,a,s′

αs,a
, (17)

where αs,a =
∑

s′∈S αs,a,s′ .

Value function. To estimate the values of belief states, we
make use of the replicated Q-learning method, as introduced
in Chrisman (1992) and formalized by Littman, Cassandra,
and Kaelbling (1995). In this method, we assume the optimal
action for any belief state can be given as a linear function
over all states. With this assumption, we choose a control
action a in belief state b as follows:

at = max
a∈A

Q(bt, a) = max
a∈A

∑
s∈S

bt(s)Q(s, a). (18)

To update the Q-values, we use the following update rule:

Q(s, a)← (1− ηs)Q(s, a) + ηs(r̃ + γΨ(s, a)), (19)

with ηs = b(s)η the weighted learning rate and Ψ(s, a) the
estimated future return after state-action pair (s, a):

Ψ(s, a) =
∑
s′∈S

P (s′ | s, a)max
a′

Q(s′, a′). (20)

Lastly, to incentivize exploration, we create an optimisitc
variant of Q. For this, we define an exploration bonus δ:

δ(s, a) = max

[
0,
Nopt − αs,a

Nopt
(Rmax −Q(s, a))

]
, (21)

with Rmax the maximum reward in the ACNO-MDP and
Nopt a user-set hyperparameter. We use this metric to cre-
ate an optimistic value function Qopt:

Qopt(s, a) = Q(s, a) + δ(s, a), (22)

216

which we use instead of the real Q-value in Equations 18
and 20. Inspired by R-Max (Brafman and Tennenholtz
2002), our metric initially biases all Q-values such that
Q(s, a) = Rmax, and removes this bias in a number of steps.
However, instead of a binary change, δ makes this transi-
tion in Nopt (linear) steps. In practice, we found this gives a
stronger incentive to explore all state-action pairs more uni-
formly, leading to a faster convergence rate.

Measurement condition. In an RL setting, we note there
are two distinct reasons for wanting to measure your envi-
ronment: exploratory measurements to improve the accuracy
of the model, and exploitative measurements which improve
the expected return. For the latter, we have already intro-
duced measuring value (MV) as defined in Equation 6.

For the former, we again draw inspiration from R-Max
(Brafman and Tennenholtz 2002) by introducing a parame-
ter Nm, and measure the first Nm times a state-action pair is
visited. We keep track of this number using α⃗ as specified in
Equation 16. Lastly, we specify to take exploratory measure-
ments only if we are certain about the current state, since no
model update is performed otherwise (Equation 16).

Combining both types of measurements, we construct the
following condition for deciding when to measure:

mt=

{
1 if ∃s : bt(s)=1 ∧ αs,at

<Nm;

mMV(bt, at) otherwise.
(23)

Model-based training. Lastly, inspired by the Dyna-
framework (Sutton 1991), at each step we perform an ex-
tra Ntrain training steps. For this, we pick a random state s
and action a, create a simulated reward, and use this to per-
form a Q-update (Equation 19). For this simulated reward,
we use the average reward received thus far Rs,a, which we
initialise as 0 and update each step:

Rs,a←
{

Rs,a·αs,a+rt
αs,a+1 if at−1=a,mt=1, bt(s)=1;

Rs,a otherwise.
(24)

Although originally proposed to deal with changing envi-
ronments, we mainly use the Dyna approach to speed up the
convergence of the Q-table. This is especially relevant for
our setting, where even the Q-values for actions never cho-
sen by our policy need to be accurate to estimate MV(bt, at).

Empirical Evaluation
In this section, we report on our empirical evaluation of
Dyna-ATMQ in a number of environments. We first describe
the setup of both the algorithms and environments. Then,
we show the results of our experiments and highlight some
key conclusions. All used code and data can be found at
https://github.com/LAVA-LAB/ATM.

Setup
We test the following algorithms:

Dyna-ATMQ: We implement Dyna-ATMQ as described
in the previous section. We set γ=0.95, η=0.1, Nb=100
and Nopt=Nm=20. For offline training, we choose random
states and update their current optimal action with proba-
bility ϵtrain=0.5, and a random different action otherwise.

s+

P

(1-P)

s-

Q= 1

Q= 0

a1

a1

a0

a1

a0

a0

s0

Figure 6: The measuring value environment used to test if
an agent can determine the value of measuring.

We use Ntrain=25, but also test a non-dynamic variant with
Ntrain=0, which we’ll refer to as ATMQ.

AMRL-Q: For AMRL-Q, we re-implement the algorithm
as specified in Bellinger et al. (2021). We set γ=0.95 and
α=0.1 to match those of Dyna-ATMQ, and use initial mea-
surement bias β=0.1 as described in the paper. Lastly, we
use ϵ=0.1 for the first 90% of all episodes but switch to a
fully greedy approach for the last 10%.

ACNO-OTP: We implement the observe-before-planning
algorithm specified in Nam, Fleming, and Brunskill (2021),
using an altered version of the original code, which we re-
fer to as ACNO-OTP (see Krale, Simão, and Jansen 2023,
Appendix B, for more details). For the experiments, we use
γ=0.95 and ucb-coefficient c=10. We perform 25.000 roll-
outs per step at a max search depth of 25, with between 1800
and 2000 particles. Since we are interested in results after
convergence, we limit the exploitation phase to the last 50
episodes and only compare to these.

For our testing, we use the following environments:
Measuring value: As a simple environment to test mea-

suring value, we convert our example from Figure 4 to a
graph, as shown in Figure 6. This environment consist of
three state S={s0, s+, s−}, with s0 as the initial state. Our
agent can choose actions from action space A={a0, a1},
where a0 always returns the agent to the initial state. From
state s0, taking action a1 results in a transition to s+ with
probability p and a transition to s− with probability p − 1.
Taking action a1 in the states s+ and s− ends the episode
and returns rewards r=1 and r=0, respectively.

For this environment, we can explicitly describe its opti-
mal strategy and its expected value. We notice that depend-
ing on p and c, such strategies either try to measure the (oth-
erwise indistinguishable) states s+ and s−, or they do not.
When not measuring, our expected return is always p. When
measuring, our expected return in s+ is 1 − c, and in s− it
is the expected return of s0 minus c. Combining this, we can
calculate the expected return for s0 with a measuring policy:

Eπ

[∑
t

γtr̃t

]
=

∑
n=0

γ2n
(
p·
(
1−p

)n(
1−c(n+1)

))
, (25)

where n is the number of measurements required before the
episode ends. For our experiments, we set γ=1 and p=0.8,
which means measuring is profitable for c ≤ 0.16.

Frozen lake: As a more complex toy environment, we use
the standard openAI gym frozen lake environment (Brock-
man et al. 2016), which describes an n×n grid with a num-
ber of ‘holes’. The goal of the agent is to walk from its initial

217

Measurement Cost

0.05 0.10 0.20

Algorithm SR M SR M SR M

ATMQ 0.94 1.30 0.76 0.50 0.78 0.11
Dyna-ATMQ 0.93 1.34 0.86 1.14 0.82 0.16
AMRL 0.82 0.00 0.80 0.00 0.78 0.00
ACNO-OTP 0.94 1.18 0.81 0.00 0.79 0.00

Variant

Deterministic Semi-slippery Slippery

Algorithm SR M SR M SR M

ATMQ 1.00 0.00 0.75 2.65 0.02 0.76
Dyna-ATMQ 1.00 0.00 0.65 2.95 0.03 0.93
AMRL 1.00 0.00 0.41 0.00 0.03 0.00
ACNO-OTP 1.00 0.00 0.40 0.00 0.04 0.00

Table 1: Average scalarized return (SR) and the number of measurements (M) after training, in the measuring value (left) and
frozen lake (right) environments. Results are gathered over 5 repetitions, and present the average over the last 50 episodes.

0.050 0.075 0.100 0.125 0.150 0.175 0.200
Measurement Cost

0.8

0.9

1.0

Sc
al

ar
iz

ed
R

et
ur

n

ATMQ
Dyna-ATMQ
AMRL-Q
ACNO-OTP
Optimal

0.050 0.075 0.100 0.125 0.150 0.175 0.200
Measurement Cost

0.0

0.5

1.0

1.5

M
ea

su
re

m
en

ts

ATMQ
Dyna-ATMQ
AMRL-Q
ACNO-OTP
Optimal

Figure 7: Scalarize returns and the number of measurements
in the measuring value environment, with p=0.8 and varying
measurement costs. Values are averages over 5 repetitions
after convergence.

state to some goal state without landing on any hole spaces.
The agent receives a reward r=1 if it reaches the goal and
r=0 otherwise. The episode ends once the agent reaches the
goal state or a hole tile. In our testing, we will use the pre-
defined 4× 4 and 8× 8 map settings, as well as larger maps
randomly generated, all with a measuring cost c=0.05. The
agent has action space A={left, down, right, up}, but we
consider three variations of their interpretation. Firstly, we
use both the predefined deterministic and non-deterministic
(or slippery) settings from the standard gym. In the deter-
ministic case, the agent is always moved in the given direc-
tion, while in the slippery case it has an equal probability
to move in the given or a perpendicular direction. We also
implement and test a more predictable semi-slippery vari-
ant, where the agent always moves in the given direction,
but has a 0.5 chance of moving two spaces instead of one.

Results
To test the measuring value metric, we run Dyna-ATMQ
on the measuring value environment for a range of differ-
ent measurement costs. The results can be found in Table 1

0 200 400 600 800 1000
Episode

−0.5

0.0

0.5

1.0

Sc
al

ar
iz

ed
R

et
ur

n

ATMQ
Dyna-ATMQ
AMRL-Q

0 200 400 600 800 1000
Episode

0.0

2.5

5.0

7.5

M
ea

su
re

m
en

ts

ATMQ
Dyna-ATMQ
AMRL-Q

Figure 8: Empirical results on semi-slippery 4 × 4 frozen
lake environment, gathered over 5 repetitions.

(left) and Figure 7. We notice that both Dyna-ATMQ vari-
ants, as well as ACNO-OTP, can find close-to-optimal mea-
suring and non-measuring policies. However, as clearly seen
in Figure 7 (bottom), all algorithms use non-measuring poli-
cies for costs where measuring would still be optimal. The
Dyna-variant of ATMQ performs slightly better than both
others, but the difference is minimal, especially in terms of
rewards. In contrast, AMRL-Q always converges to a non-
measuring policy, regardless of measurement cost.

To test how the act-then-measure-heuristic effects perfor-
mance for varying amounts of non-determinism, we run tests
on all three variants of the 4 × 4 frozen lake environment.
Results are given in Table 1 (right). For both the determin-
istic and slippery variants, both versions of ATMQ perform
about on par with both of its predecessors. For the former,
it converges to an optimal non-measuring policy, and for the
latter none of the algorithms get a significantly positive re-
sult. However, in the semi-slippery environment, both vari-
ants significantly outperform both ACNO-OTP and AMRL-
Q, with the non-training variant performing slightly better.
To visualize, training curves for our algorithm and AMRL-
Q in this environment are shown in Figure 8.

To test the scalability of algorithms using the act-then-

218

8 10 12 14 16 18
Lake Size

0.0

0.5

1.0
Sc

al
ar

iz
ed

R
et

ur
n

ATMQ
Dyna-ATMQ
AMRL-Q

Figure 9: Average scalarized return (after convergence) for
semi-slippery frozen lake environment, for different sizes.
Results for ATMQ and AMRL-Q averaged over 5 repeti-
tions, for Dyna-ATMQ over 1.

measure-heuristic, we test the performance of Dyna-ATMQ
on a number or larger semi-slippery frozen lake Environ-
ments. Results of both ATMQ variants and AMRL-Q are
shown in Figure 9 2 . Although the performance of both vari-
ants drops quickly with the size of the environment, they are
able to achieve above-zero returns for far bigger environ-
ments than AMRL-Q. The Dyna-variant performs better for
larger environments, even after convergence.

Discussion

Based on our results, we make the following claims:

Measuring value is a suitable metric. In Table 1(right),
we notice Dyna-ATMQ converges to a non-measuring pol-
icy in the deterministic environments, as expected. For
stochastic environments, we note it makes more measure-
ments than our baselines but gets better or equal returns.
This suggests it correctly identifies when taking measure-
ments is valuable. We notice suboptimal measuring behavior
only when the difference in return between measuring and
non-measuring is small, but note that this could be caused
by slight errors in our Q-table.

Dyna-ATMQ performs well in small environments. In
both the measuring value and small frozen lake environ-
ments, we find Dyna-ATMQ performs better than the bound
given by Theorem 1. Moreover, it outperforms or equals all
baseline algorithms while staying computationally tractable.

Dyna-ATMQ is more scalable than current methods.
Dyna-ATMQ stays computationally tractable for larger en-
vironments than ACNO-OTP, while yielding higher returns
than AMRL-Q. More generally, we note that our current
implementation of the ATM-heuristic approximates the Q-
values of states in a way that is known to lead to errors
for highly uncertain settings (Littman, Cassandra, and Kael-
bling 1995). This suggests a more sophisticated algorithm
using the ATM heuristic could improve scalability.

2Because of high computation times, we were unable to obtain
results for ACNO-OTP in these environments.

Related Work

For the tabular ACNO-MDP setting, three RL algorithms al-
ready exist: the AMRL-Q (Bellinger et al. 2021), and the
observe before planning and the ACNO-POMCP algorithms
(Nam, Fleming, and Brunskill 2021). The latter is shown to
perform worse than observe before planning so is not con-
sidered in this paper, the other two are analysed in detail in
this paper and used as baselines in our experiments.

Another closely related work is that of Doshi-Velez,
Pineau, and Roy (2012). They introduce a framework in
which agents explore a POMDP, but have the additional op-
tion to make ‘action queries’ to an oracle. The method used
is comparable to ours and their concept of Bayesian Risk
resembles the concept of measuring value introduced here.
However, since their method relies on action queries instead
of measurements, results cannot easily be compared.

We also note some related papers which explore active
measure learning in different contexts. Yin et al. (2020) pro-
pose a method for AMRL which relies on a pre-trained
neural network to infer missing information. Ghasemi and
Topcu (2019) propose a method to choose near-optimal
measurements on a limited budget per step, which can be
used to improve pre-computed ‘standard’ POMDP policies.
Bernardino et al. (2022) investigate diagnosing patients us-
ing an MDP approach, in which the action themselves cor-
respond to taking measurements. Mate et al. (2020) consider
a restless multi-armed bandit setting where executing an ac-
tion also resolves uncertainty for the chosen arms. Lastly,
Araya-López et al. (2011) study how to approximate an
MDP without a reward function.

Conclusion

In this paper, we proposed the act-then-measure heuristic for
ACNO-MDPs and proved that the lost return for following
it is bounded. We then proposed measuring value as a met-
ric for the value of measuring in ACNO-MDPs. We describe
Dyna-ATMQ as an RL algorithm following the ATM heuris-
tic, and show empirically it outperforms prior RL methods
for ACNO-MDPs in the tested environments.

Future work could focus on improving the performance
of Dyna-ATMQ, for example, by implementing more so-
phisticated action choices and Q-updates, or by taking epis-
temic uncertainty more into account for exploration. To im-
prove scalability, an interesting line of research is to adapt an
already existing method to use the ATM-heuristic. Model-
based methods, such as MBPO (Janner et al. 2019), are
most suitable for such adaptations. Another possible direc-
tion is to investigate the ATM-heuristic in the more general
active measure POMDP setting, in which we lose the as-
sumption of complete and noiseless measurements. Lastly,
our approach could be considered in different multiobjec-
tive settings, such as one where the preference function for
reward and measurement cost is not known a-priori (Marler
and Arora 2004), or where the measuring cost is used as a
constraint (Ghasemi and Topcu 2019).

219

Acknowledgments
This research has been partially funded by NWO grant
NWA.1160.18.238 (PrimaVera) and the ERC Starting Grant
101077178 (DEUCE).

References
Araya-López, M.; Buffet, O.; Thomas, V.; and Charpillet, F.
2011. Active Learning of MDP Models. In EWRL, vol-
ume 7188 of Lecture Notes in Computer Science, 42–53.
Springer.
Bellinger, C.; Coles, R.; Crowley, M.; and Tamblyn, I. 2021.
Active Measure Reinforcement Learning for Observation
Cost Minimization. In Canadian Conference on AI. Cana-
dian Artificial Intelligence Association.
Bernardino, G.; Jonsson, A.; Loncaric, F.; Castellote, P. M.;
Sitges, M.; Clarysse, P.; and Duchateau, N. 2022. Reinforce-
ment Learning for Active Modality Selection During Diag-
nosis. In MICCAI (1), volume 13431 of Lecture Notes in
Computer Science, 592–601. Springer.
Brafman, R. I.; and Tennenholtz, M. 2002. R-MAX - A
General Polynomial Time Algorithm for Near-Optimal Re-
inforcement Learning. J. Mach. Learn. Res., 3: 213–231.
Brockman, G.; Cheung, V.; Pettersson, L.; Schneider, J.;
Schulman, J.; Tang, J.; and Zaremba, W. 2016. Openai gym.
arXiv preprint arXiv:1606.01540.
Chrisman, L. 1992. Reinforcement Learning with Percep-
tual Aliasing: The Perceptual Distinctions Approach. In
AAAI, 183–188. AAAI Press / The MIT Press.
Dearden, R.; Friedman, N.; and Andre, D. 1999. Model
based Bayesian Exploration. In UAI, 150–159. Morgan
Kaufmann.
Doshi-Velez, F.; Pineau, J.; and Roy, N. 2012. Reinforce-
ment learning with limited reinforcement: Using Bayes risk
for active learning in POMDPs. Artif. Intell., 187: 115–132.
Dulac-Arnold, G.; Levine, N.; Mankowitz, D. J.; Li, J.;
Paduraru, C.; Gowal, S.; and Hester, T. 2021. Challenges of
real-world reinforcement learning: definitions, benchmarks
and analysis. Mach. Learn., 110(9): 2419–2468.
Emani, P.; Hamlet, A. J.; and Crane, C. 2015. POMDPy:
An Extensible Framework for Implementing POMDPs in
Python. arXiv preprint arXiv:2004.10099.
Ghasemi, M.; and Topcu, U. 2019. Online Active Perception
for Partially Observable Markov Decision Processes with
Limited Budget. In CDC, 6169–6174. IEEE.
Guo, Z. D.; Doroudi, S.; and Brunskill, E. 2016. A PAC RL
Algorithm for Episodic POMDPs. In AISTATS, volume 51
of JMLR Workshop and Conference Proceedings, 510–518.
JMLR.org.
Janner, M.; Fu, J.; Zhang, M.; and Levine, S. 2019. When
to Trust Your Model: Model-Based Policy Optimization. In
NeurIPS, 12498–12509.
Jimenez-Roa, L. A.; Heskes, T.; Tinga, T.; Molegraaf, H. J.;
and Stoelinga, M. 2022. Deterioration modeling of sewer
pipes via discrete-time Markov chains: A large-scale case

study in the Netherlands. In 32nd European Safety and Reli-
ability Conference, ESREL 2022: Understanding and Man-
aging Risk and Reliability for a Sustainable Future, 1299–
1306.
Kormushev, P.; Calinon, S.; and Caldwell, D. G. 2013. Re-
inforcement Learning in Robotics: Applications and Real-
World Challenges. Robotics, 2(3): 122–148.
Krale, M.; Simão, T. D.; and Jansen, N. 2023. Act-Then-
Measure: Reinforcement Learning for Partially Observ-
able Environments with Active Measuring. arXiv preprint
arXiv:2303.08271.
Lei, L.; Tan, Y.; Zheng, K.; Liu, S.; Zhang, K.; and Shen, X.
2020. Deep Reinforcement Learning for Autonomous Inter-
net of Things: Model, Applications and Challenges. IEEE
Commun. Surv. Tutorials, 22(3): 1722–1760.
Littman, M. L.; Cassandra, A. R.; and Kaelbling, L. P. 1995.
Learning Policies for Partially Observable Environments:
Scaling Up. In ICML, 362–370. Morgan Kaufmann.
Marler, R.; and Arora, J. 2004. Survey of Multi-Objective
Optimization Methods for Engineering. Structural and Mul-
tidisciplinary Optimization, 26: 369–395.
Mate, A.; Killian, J. A.; Xu, H.; Perrault, A.; and Tambe, M.
2020. Collapsing Bandits and Their Application to Public
Health Intervention. In NeurIPS.
Nam, H. A.; Fleming, S. L.; and Brunskill, E. 2021. Rein-
forcement Learning with State Observation Costs in Action-
Contingent Noiselessly Observable Markov Decision Pro-
cesses. In NeurIPS, 15650–15666.
Silver, D.; and Veness, J. 2010. Monte-Carlo Planning in
Large POMDPs. In NIPS, 2164–2172. Curran Associates,
Inc.
Simão, T. D.; Suilen, M.; and Jansen, N. 2023. Safe Policy
Improvement for POMDPs via Finite-State Controllers. In
AAAI. ArXiv preprint arXiv:2301.04939.
Sunberg, Z.; and Kochenderfer, M. J. 2022. Improving Au-
tomated Driving Through POMDP Planning With Human
Internal States. IEEE Trans. Intell. Transp. Syst., 23(11):
20073–20083.
Sutton, R. S. 1991. Dyna, an Integrated Architecture for
Learning, Planning, and Reacting. SIGART Bull., 2(4): 160–
163.
Watkins, C. J. C. H.; and Dayan, P. 1992. Technical Note
Q-Learning. Mach. Learn., 8: 279–292.
Yin, H.; Li, Y.; Pan, S. J.; Zhang, C.; and Tschiatschek, S.
2020. Reinforcement Learning with Efficient Active Feature
Acquisition. arXiv preprint arXiv:2011.00825.
Yu, C.; Liu, J.; Nemati, S.; and Yin, G. 2023. Reinforcement
Learning in Healthcare: A Survey. ACM Comput. Surv.,
55(2): 5:1–5:36.
Zanette, A.; and Brunskill, E. 2019. Tighter Problem-
Dependent Regret Bounds in Reinforcement Learning with-
out Domain Knowledge using Value Function Bounds. In
ICML, volume 97 of Proceedings of Machine Learning Re-
search, 7304–7312. PMLR.

220

