
Thiago D. Simão

ONLINE and OFFLINESAFE
REINFORCEMENT
LEARNING

SAFE ONLINE AND OFFLINE
REINFORCEMENT LEARNING

SAFE ONLINE AND OFFLINE
REINFORCEMENT LEARNING

Dissertation

for the purpose of obtaining the degree of doctor
at Delft University of Technology

by the authority of the Rector Magnificus prof.dr.ir. T.H.J.J. van der Hagen,
chair of the Board for Doctorates

to be defended publicly on
Monday 16 January 2023

at 15:00 o’clock

by

Thiago DIAS SIMÃO

Master of Science in Computer Science,
University of São Paulo, Brazil,

born in Santa Rita de Caldas, Brazil.

Composition of the doctoral committee:

Rector Magnificus, chairperson
Dr. M. T. J. Spaan, Technische Universiteit Delft, promotor
Dr. ir. R. M. Stikkelman, Technische Universiteit Delft, copromotor

Independent members:
Prof. dr. R. Babuška Technische Universiteit Delft
Prof. dr. ir. B. De Schutter Technische Universiteit Delft
Dr. F. A. Oliehoek Technische Universiteit Delft
Prof. dr. A. Plaat Universiteit Leiden
Dr. M. Petrik University of New Hampshire

The research reported in this dissertation has been funded by the Netherlands Organisa-
tion for Scientific Research (NWO), as part of the Energy System Integration: planning,
operations, and societal embedding program.

Cover: Elementals #44 by Michael Connolly (CC BY-NC 4.0) .

Copyright © 2023 by T. D. Simão

ISBN 978-94-6384-406-2

An electronic version of this dissertation is available at
http://repository.tudelft.nl/.

https://www.artblocks.io/token/41000044
https://creativecommons.org/licenses/by-nc/4.0/
http://repository.tudelft.nl/

CONTENTS

Summary ix

Samenvatting xi

1 Introduction 1

1.1 Reliable Artificial Intelligence . 1

1.2 Reinforcement Learning: Promises & Challenges 2

1.3 The Safety Challenge . 3

1.3.1 Alternative Criteria. 4

1.3.2 Safe Exploration . 4

1.4 Scope . 4

1.4.1 Reliability in Offline Reinforcement Learning 4

1.4.2 Safety Constraints in Reinforcement Learning 6

1.5 Research Goals . 6

1.6 Contributions . 9

1.7 Outline . 10

2 Background 11

2.1 Markov Decision Processes . 11

2.2 Factored Markov Decision Processes . 14

2.3 Constrained Markov Decision Processes 16

2.4 Reinforcement Learning . 18

2.4.1 Model Learning . 19

2.4.2 Model-based Exploration . 22

2.4.3 From Online to Offline . 24

2.5 Safe RL . 25

2.5.1 Alternative Criteria. 25

2.5.2 Safe Exploration . 27

2.6 Summary . 27

3 Safe Policy Improvement in Factored Environments 29

3.1 Safety in Offline Reinforcement Learning 30

3.2 Safe Policy Improvement . 32

3.2.1 Reliable Offline RL: An Overview 32

3.2.2 Optimization Criterion. 34

3.2.3 SPI with Baseline Bootstrapping Algorithms 35

v

vi CONTENTS

3.3 Factored SPI with Known Structure . 36
3.3.1 Factored Policy-Based SPIBB. 36
3.3.2 Benefits of a Factored Representation 37
3.3.3 Theoretical Analysis . 38
3.3.4 Empirical Analysis . 40

3.4 Structure Learning for Safe Policy Improvement 43
3.4.1 The Algorithm . 43
3.4.2 Theoretical Analysis . 45
3.4.3 Empirical Analysis . 45

3.5 A Realistic Case Study . 49
3.6 Conclusions and Future Work. 50

4 Safe Policy Improvement with an Estimated Behavior Policy 51
4.1 Approximate Safe Policy Improvement 52
4.2 Baseline Estimates . 53
4.3 Algorithm and analysis . 54

4.3.1 Theorem 4 discussion . 56
4.4 Empirical Analysis . 57

4.4.1 Random finite MDPs . 57
4.4.2 Continuous MDPs . 59

4.5 Conclusions. 65

5 Safe Reinforcement Learning During Training 67
5.1 Constrained Reinforcement Learning . 70

5.1.1 Efficiency Metrics . 70
5.1.2 Solving CMDPs with Optimism 70

5.2 Abstraction for Expected Cost . 72
5.2.1 Cost-model Irrelevance . 72
5.2.2 A Cost-model-irrelevant Abstraction 73
5.2.3 Planning with the Abstract CMDP 75

5.3 Always Safe . 76
5.3.1 The Linear Program . 76
5.3.2 Policies. 77
5.3.3 The Algorithm . 79
5.3.4 Theory . 80

5.4 Empirical Results . 81
5.4.1 Setup. 81
5.4.2 Safety evaluation. 85
5.4.3 Dynamic constraint tightening evaluation 87
5.4.4 Tight safety bounds . 90
5.4.5 Exploration efficiency . 90
5.4.6 Results discussion . 91

5.5 Related Work . 91
5.6 Conclusions. 92

CONTENTS vii

6 Concluding Remarks 95
6.1 Contributions . 95

6.1.1 Increasing Tractability . 95
6.1.2 Striving for Simplicity . 96
6.1.3 On the Gap between the Lab and the Real World 97

6.2 Reflections . 97
6.3 Directions for Future Work . 98

6.3.1 Revisiting the Offline Reinforcement Learning 98
6.3.2 New Constraints for Reinforcement Learning 99
6.3.3 Alternative Sources of Safety Guarantees. 100

6.4 Final Remarks. 100

A Acronyms 101

B Notation 103

Bibliography 105

Acknowledgements 125

List of Publications 127

SUMMARY

Reinforcement Learning (RL) agents can solve general problems based on little to no
knowledge of the underlying environment. These agents learn through experience, us-
ing a trial-and-error strategy that can lead to effective innovations, but this randomized
process might cause undesirable events. Therefore, to enable the adoption of RL in our
daily lives, we must ensure their reliability and safety. Safety requirements are often in-
compatible with the naive random exploration usually performed by RL agents. Safe RL
studies how to make such agents more reliable and how to ensure they behave appro-
priately. We investigate these issues in online settings, where the agent interacts directly
with the environment, and in offline settings, where the agent only has access to histori-
cal data and does not interact directly with the environment.

While safety has numerous facets in RL, in this thesis, we focus on two of them.
First, the safe policy improvement problem, which considers how to compute a policy
offline reliably. Second, the constrained reinforcement learning problem, which investi-
gates how to learn a policy that satisfies a set of safety constraints. Next, we detail these
perspectives and how we approach them.

The first perspective is of particular interest in offline settings. In this setting, we
can imagine some decision mechanism has been operating the system, we refer to this
mechanism as the behavior policy. Assuming these past decisions were recorded in a
database, we would like to use RL to compute a new policy using such database. It would
be difficult to convince stakeholders to switch to the policy computed by RL if there were
chances that the new policy would cause considerable performance loss compared to
the behavior policy. Therefore, developing algorithms that reliably compute policies that
outperform the behavior policy is essential as this gives confidence to decision-makers
that the new policy will not degrade the performance of the underlying system. The safe
policy improvement problem formalizes these issues.

Considering that real-world data is limited and costly, in Chapter 3, we investigate
how to improve the sample complexity of safe policy improvement algorithms by ex-
ploiting the factored structure of the underlying problem. In particular, we consider
problems where the dynamics of each state variable depend only on a small subset of
the state variables. Exploiting this structure, we develop RL algorithms that require or-
ders of magnitude fewer data to find better policies than their counterparts that ignore
such structure. This method also generalizes samples from one state to another, which
allows us to compute improved policies if the data only partially cover the problem.

In many real-world applications such as dialogue systems, pharmaceutical tests, and
crop management, data is collected under human supervision, and the behavior policy
remains unknown. In Chapter 4, we apply safe policy improvement algorithms with an
estimated policy built from data. We formally provide safe policy improvement guaran-
tees over the behavior policy even without direct access to it. Our empirical experiments
on tasks with finite and continuous states support the theoretical findings.

ix

x SUMMARY

The second safety perspective is relevant for online RL agents. Engineering a reward
signal that allows the agent to maximize its performance while remaining safe is not
trivial. Therefore, it is better to decouple safety from reward using constrained Markov
decision processes (CMDPs), where an independent signal models the safety aspects. In
this setting, an RL agent can autonomously find trade-offs between performance and
safety. Unfortunately, most RL agents designed for the constrained setting only guaran-
tee safety after the learning phase, which prevents their direct deployment.

In Chapter 6, we investigate settings where a concise abstract model of the safety as-
pects is given, a reasonable assumption since a thorough understanding of safety-related
matters is a prerequisite for deploying RL in typical applications. We propose an RL al-
gorithm that uses this abstract model to learn policies safely. During the training pro-
cess, this algorithm can seamlessly switch from a conservative to a greedy policy with-
out violating the safety constraints. We prove that this algorithm is safe under the given
assumptions. Empirically, we show that even if safety and reward signals are contradic-
tory, this algorithm always operates safely, while when they are aligned, this approach
also improves the agent’s performance. Finally, we study how to reduce the performance
regret of this algorithm without sacrificing the safety guarantees.

To summarize, we develop new RL methods exploiting prior knowledge about the
structure of the problem. We propose reliable offline algorithms that can improve the
policy using fewer data and online algorithms that comply with safety constraints while
learning. Besides safety and reliability, we also touch on other issues preventing the de-
ployment of RL to real-world tasks, such as data efficiency and learning with a fixed batch
of data. Nevertheless, we must recall that other challenges, such as partial-observability
and explainability, still require attention. We hope this thesis serves as a stepping stone
toward combining different types of prior knowledge to improve various aspects of RL.

SAMENVATTING

Reinforcement Learning (RL) agents zijn in staat om generieke problemen op te lossen
met weinig tot geen kennis van de onderliggende omgeving. Deze agents leren door
ervaring op te doen met behulp van een trial-and-error strategie die tot vernieuwende
ontdekkingen kan leiden, maar dit willekeurige proces kan ook ongewilde effecten ver-
oorzaken. Om dagelijks gebruik van RL mogelijk te maken moeten we zeker zijn van de
betrouwbaarheid en veiligheid. Veiligheidseisen zijn vaak in strijd met de naïeve ontdek-
kingsstrategie die wordt gebruikt in RL. Safe RL onderzoekt hoe hoe RL agents betrouw-
baarder te maken en te garanderen dat ze zich daar naar gedragen. Wij onderzoeken
deze problemen in een online context, waar de agent directe interactie met de omgeving
heeft, en in een ofline context, waar de agent alleen historische data kan gebruiken en
geen directe interactie met de omgeving heeft.

Veiligheid in RL kent meerdere aspecten. In dit proefschrift richten we ons op twee
van hen. Ten eerste, het safe policy improvement probleem, wat draait om het betrouw-
baar berekenen van een policy in de offline context. Ten tweede, het constrained rein-
forcement learning probleem, waarin we onderzoeken hoe een policy die aan een aantal
veiligheidseisen dient te voldoen geleerd kan worden. In wat volgt beschrijven we deze
twee perspectieven en onze aanpak in detail.

Het eerste perspectief is in het bijzonder van belang in een offline context. In een of-
fline context stellen we ons voor hoe een beslissingsmechanisme het systeem bestuurt,
en noemen dit mechanisme de behavior policy. Aannemende dat beslissingen uit het
verleden zijn opgeslagen in een database, willen we RL gebruiken om een nieuwe policy
the berekenen op basis van zo’n database. Het is moeilijk betrokken partijen te over-
tuigen om over te stappen naar de nieuwe policy berekend door middel van RL als er
een kans is dat deze nieuwe policy aanzienlijk slechter presteert dan de behavior policy.
Daarom is het ontwikkelen van algoritmen die betrouwbaar nieuwe policies die beter
presteren dan de behavior policy kunnen berekenen essentieel, aangezien dit beleids-
bepalers vertrouwen geeft dat de nieuwe policy niet slechter zal presteren in het onder-
liggende systeem. Het safe policy improvement probleem formaliseert deze problemen.

Aangezien data afkomstig uit de echte wereld kostbaar en beperkt is, onderzoeken
we in Hoofdstuk 3 hoe we de sample complexity van safe policy improvement algoritmen
kunnen verbeteren door gebruik te maken van de gefactoriseerde structuur van het on-
derliggende probleem. In het bijzonder kijken we naar problemen waar het gedrag van
elke toestandsvariabele enkel afhankelijk is van een kleine deelverzameling van alle toe-
standsvariabelen. Door gebruik te maken van deze structuur bouwen we RL algoritmen
die aanzienlijk minder data nodig hebben om betere policies te vinden dan vergelijk-
bare methoden die zulke structuur ongebruikt laten. Deze methode is ook in staat om
willekeurige trekkingen van een toestand te veralgeminiseren naar andere toestanden,
wat ons in staat stelt om ook verbeterde policies te berekenen wanneer de data niet het
volledige probleem dekt.

xi

xii SAMENVATTING

In veel realistische toepassingen, zoals spraaksystemen, farmaceutische tests, en land-
bouwmanagement, wordt data verzameld onder menselijk toezicht en is de behavior
policy onbekend. In Hoofdstuk 4 passen we safe policy improvement algoritmen toe op
een op basis van data geschatte policy. We geven formele garanties op de verbetering
van de safe policy improvement op de behavior policy, zelfs zonder directe toegang tot
die behavior policy. Empirische experimenten op taken met eindige en continue states
ondersteunen de theoretische resultaten.

Het tweede perspectief is relevant voor online RL agents. Het is moeilijk om een een
rewardsignaal te maken dat de agent in staat stelt zijn prestaties te maximaliseren en
tegelijkertijd veiligheid te garanderen. Daarom is het beter om veiligheid los te koppelen
van de reward en constrained Markov decision processes (CMDPs) te gebruiken, waar een
onafhankelijk signaal de veiligheidsaspecten beschrijft. Dit stelt een RL agent in staat
om op autonome wijze een balans vinden tussen prestaties en veiligheid. De meeste
RL agents zijn echter ontworpen om alleen veiligheid te garanderen na de leerfase, wat
direct gebruik onmogelijk maakt.

In Hoofdstuk 6 onderzoeken we situaties waar een beknopt abstract model van de
veiligheidsaspecten is gegeven, wat een redelijke aanname is aangezien een goed begrip
van aan veiligheid gerelateerde zaken een vereiste is om RL te gebruiken in praktische
toepassingen. Wij geven een RL algoritme dat dit abstracte model gebruikt om op veilige
wijze policies te leren. Tijdens het trainingsproces kan dit algoritme naadloos schakelen
tussen een behoudende en een greedy policy zonder de veiligheidseisen te breken. We
bewijzen dat dit algoritme veilig is onder de gegeven aannames. Empirische resultaten
laten zien dat zelfs wanneer veiligheids- en rewardsignalen tegenstrijdig zijn, dit algo-
ritme altijd veilig werkt, en wanneer de signalen niet tegenstrijdig zijn zal deze methode
ook de prestaties van de agent verbeteren. Als laatste onderzoeken we hoe de presta-
tieverlies van dit algoritme verminderd kan worden zonder de veiligheidsgaranties op te
offeren.

Samenvattend, we ontwikkelen nieuwe RL methoden die bestaande kennis van de
structuur uitbuiten. We geven betrouwbare offline algoritmen die de policy kunnen ver-
beteren met minder data dan online algoritmen die voldoen aan veiligheidseisen tijdens
het leren. Naast veiligheid en betrouwbaarheid kijken we ook naar andere problemen
die het gebruik van RL voor realitische toepassingen tegenhouden, zoals data efficiën-
tie en leren van een vaste hoeveelheid data. Desondanks moeten we erop wijzen dat
andere uitdagingen, zoals gedeeltelijke observeerbaarheid en uitlegbaarheid nog steeds
aandacht vereisen. We hopen dat dit proefschrift een opstap biedt richting het combi-
neren van verschillende soorten bestaande kennis om verscheidende aspecten van RL te
verbeteren.

1
INTRODUCTION

In this chapter, we briefly showcase the potential of Reinforcement Learning (RL), dis-
cuss the challenges around safety that are preventing the wider adoption of RL, and give
an overview of how this thesis aims to address these challenges.

1.1. RELIABLE ARTIFICIAL INTELLIGENCE
Every new piece of technology has the potential to improve our lives, however novel
technology must be safe and reliable, otherwise, it will render itself useless. Some Ar-
tificial Intelligence (AI) techniques have already proven themselves reliable enough to
become part of our daily lives. Other techniques, such as Reinforcement Learning (RL;
Sutton and Barto, 2018), are still in development. As we adopt these new techniques,
their reliability will be challenged due to the increasing diversity of scenarios they en-
counter. Therefore, to guarantee their success, particularly for RL, we must ensure they
are safe and reliable.

Some AI algorithms are so present in our lives that we may not identify them as AI
anymore. When we receive mail in a foreign language we may use our phones to in-
stantly translate it to our native language (Biersdorfer, 2021). This involves using com-
puter vision for character recognition to identify the text of the letter (Lecun et al., 1998)
as well as natural language processing to translate the text to the target language (Sutskever
et al., 2014). These approaches are often on a realm called supervised learning, where the
AI system has access to examples that it can use to generalize to new situations. In par-
ticular, the feedback of a decision is immediate, which allows these algorithms to quickly
adapt the future decisions in case of a mistake.

RL algorithms can handle problems that require a sequence of decisions, taking into
account the uncertainty of future outcomes. These algorithms have shown fascinating
results in confined settings, such as playing board games and controlling simulations of
high-dimensional robots (Mnih et al., 2015; Schulman et al., 2016). While they are still
mostly restricted to the research lab, we hope to eventually use them to handle complex
tasks in the real world like driving, energy optimization, and treatment recommendation

1

1

2 1. INTRODUCTION

for healthcare. However, these applications are critical, so a new algorithm will only be
adopted if its safety is guaranteed. Unfortunately, providing safety guarantees for these
tasks is not easy, since in RL it is difficult to predict the consequences of certain decisions
without trying them first.

1.2. REINFORCEMENT LEARNING: PROMISES & CHALLENGES
Reinforcement Learning (RL; Sutton and Barto, 2018) is a paradigm of extremely general
algorithms for sequential decision making in unknown environments. In RL, an agent
interacts with an environment by repeatedly observing the state of the environment and
taking an action, which in turn changes the state of the environment. After each action,
the agent obtains a reward indicating the progress made towards completing its task.
Through these interactions, often in a trial-and-error fashion, the agent computes a pol-
icy, which prescribes the actions to be executed in each state. The goal of the agent is to
find a policy that collects the most reward over time.

Following this relatively simple framework, RL algorithms have completed astonish-
ing tasks, for example, playing Atari games at a super-human level (Mnih et al., 2015),
performing locomotion tasks with complex simulated robots (Schulman et al., 2016),
playing abstract board games like chess and go (Silver et al., 2016, 2017), and playing
strategy multi-player video games (Baker et al., 2020; Vinyals et al., 2019). We may notice
a common characteristic among these accomplishments, namely a simulated environ-
ment, where the trial-and-error strategy used by RL algorithms is not harmful, which
makes it look like RL is confined to simulated environments. Nevertheless, the complex-
ity of these tasks raises hopes that RL can solve real world tasks.

RL has the potential to solve a diverse set of complex tasks beyond simulations and
research to bring it to real world applications has already begun. To exemplify this di-
versity, we may cite surveys of RL being used in specific applications, such as energy
(Glavic et al., 2017; Vázquez-Canteli and Nagy, 2019; Wang and Hong, 2020; Yang et al.,
2020a), healthcare (Coronato et al., 2020; Liu et al., 2020), autonomous driving (Aradi,
2020; Kiran et al., 2021), traffic signal control (Wei et al., 2021; Yau et al., 2017), logistics
(Althamary et al., 2019; Haydari and Yilmaz, 2020), production systems (Panzer and Ben-
der, 2021; Yoo et al., 2021), distributed systems (Chen et al., 2021a; Jameel et al., 2020; Up-
rety and Rawat, 2021; Wu et al., 2021), and communication networks (Qian et al., 2019).
Nevertheless, the use of RL remains largely a research topic due to numerous assump-
tions made by RL algorithms that do not match the complexity of the real world.

To bypass the complexity of the real world, we might consider applying RL in a sim-
ulator and later transfer the policy found to the real system. For instance, RL can learn
to imitate animal motion in simulations and eventually transfer the policy learned to
physical robots (Peng et al., 2020). However, this requires meticulous engineering, for
example, to model the robot and its physics (Batra et al., 2021; Zhao et al., 2020). An-
other issue is that even small inaccuracies in the simulator can be propagated causing
performance losses in the real system (Ha et al., 2020). Hence, we may prefer to deploy
the RL agent directly in the environment, avoiding the gap between the simulator the
real system, but this approach has its challenges.

Interacting directly with the system can be costly and risky. Unfortunately, RL algo-
rithms are notorious for requiring a large number of interactions with the environment

1.3. THE SAFETY CHALLENGE

1

3

to find good policies, which can get to the order of millions (Mnih et al., 2016; Schulman
et al., 2017). While that may not be a problem in simulated environments, interactions in
the real world incur costs, for instance to power and maintain an electric vehicle, which
would accumulate over these interactions. Similarly, such interactions may lead to un-
desirable situations, such as colliding with another vehicle or driving out of the road, and
the probability of such events increases with each interaction between the agent and the
environment. So, to alleviate these issues, we must minimize the number of experiences
necessary to learn a reasonable policy.

Some applications already have a policy in execution, in which case we could use
realistic historical data to learn a reasonable initial policy, reducing the costs and risks
of RL algorithms. Consider for instance a recommender system that already has a policy
giving recommendations to a user. In this situation, the algorithm can rely on historical
data to predict if a user is interested in a certain item, which might be more effective
than to try recommending that item to the user (Chen et al., 2019). However, basic RL
algorithms can be unreliable in this setting, computing policies with low performance.
Therefore, finding reliable methods is fundamental to unleash the potential of the avail-
able historical data. We will investigate the so-called safe policy improvement problem,
where we must compute a new policy using the historical data that outperforms the pol-
icy in execution.

When no historical data is available, the agent must start from scratch. This is par-
ticularly challenging because of the random nature of the exploration performed by RL
agents. Some systems do not allow the agent to take arbitrary actions or visit certain
states that could have catastrophic consequences, such as breaking a robot or crashing
an autonomous vehicle. We will investigate this problem using the constrained reinforce-
ment learning framework, which explicitly captures the constraints of the system.

Recently, Dulac-Arnold et al. (2021) compiled a set of nine challenges that are pre-
venting the direct deployment of RL to real world tasks, often related to discrepancies be-
tween the environments where RL is being tested and real world tasks, such as partially
observable states, poorly specified reward functions, or system delays. Among them, we
also have the problems addressed in this thesis: offline training and learning with safety
constraints. This compilation reinforces the need to handle these challenges to enable
the wide adoption of RL.

1.3. THE SAFETY CHALLENGE

Since RL often relies on a trial-and-error strategy major concerns around safety arise
when we consider its deployment (Amodei et al., 2016). Safe Reinforcement Learning
(SRL) is a wide subfield within RL research that investigates how to mitigate such issues
(García and Fernández, 2015). It has two main branches, changing the optimization cri-
teria to ensure reasonable performance and changing the exploration process to pre-
vent undesirable outcomes, as Figure 1.1 illustrates. In this section, we present a short
overview of each direction. We will discuss our take on each of them in the next section.

1

4 1. INTRODUCTION

1.3.1. ALTERNATIVE CRITERIA

Due to the stochastic nature of the environment, in each trajectory, the agent might ob-
serve a different return, the accumulated reward of that trajectory. Traditionally, RL algo-
rithms aim to maximize the return in expectation. However, this does not give any guar-
antee about the return of the worst trajectories. So, an agent might return policies that
have some probability of observing unacceptably low returns. This could for instance
lead a company to bankruptcy. In that case, the agent should have a more conservative
behavior to reduce such risks.

Alternative criteria can be used to prevent such undesirable outcomes. For instance,
using a risk-averse criterion (Howard and Matheson, 1972) or a min-max criterion that
considers the worst-case outcome (Heger, 1994). Such criteria may also account for the
uncertainty the agent has about the environment. In this situation, one may choose to
be pessimistic with respect to the different dynamics the environment can present.

1.3.2. SAFE EXPLORATION

In safe exploration, the goal of the agent is to learn without experiencing catastrophic
outcomes. A catastrophe event can have different definitions. One may consider pre-
venting the agent from entering undesirable states (Turchetta et al., 2016), others might
define safety using temporal logic constraints (Junges et al., 2016). We could also ensure
the total cost of a certain trajectory does not exceed a given threshold (Moreira et al.,
2021). In summary, this line of research aims to guarantee that the policy executed in a
given episode does not violate the safety constraints.

To accomplish this task, one usually must rely on some type of prior knowledge. This
can take numerous forms, such as a teacher that provides advice, an initial safe policy, a
set of safe states, or demonstrations from an expert. Without prior knowledge, it would
be infeasible to ensure the safety of the system.

1.4. SCOPE
Figure 1.1 help us understand the scope of this thesis. It puts the RL branch of machine
learning in focus, showing our interest in sequential decision making. Then, it shows
some of the challenges to take RL to the real world and expands safe reinforcement learn-
ing in the two branches described before. In the bottom of the diagram, we see the two
main problems addressed on this thesis. We notice that both problems are alternative
criteria to the standard reinforcement learning objective, but they also share connec-
tions with other challenges in RL and with the safe exploration branch in SRL, shown in
dashed lines. We discuss each problem next.

1.4.1. RELIABILITY IN OFFLINE REINFORCEMENT LEARNING

In offline RL, also known as batch RL, the agent only has access to a fixed dataset of
historical data and does not interact directly with the environment (Lange et al., 2012;
Levine et al., 2020). This approach can circumvent the data collection challenges in set-
ting where interactions with the environment are costly or risky. Usually, we assume the
dataset was collected following a single policy, possibly hand-designed, which we refer
to as the behavior policy πb . From this perspective, it is important that the new policy π′

1.4. SCOPE

1

5

Machine Learning

Supervised Learning Reinforcement Learning

Offline Training
ó

Data Efficiency
Q

Safety
·

Alternative Criteria

Safe Policy Improvement Constrained Reinforcement Learning

Safe Exploration

Partial Observability
�

Explainability
Õ �

Unsupervised Learning

offline

online

Figure 1.1: Thesis scope, showing RL as the machine learning branch in focus. Then, it shows some of the
challenges to bring RL to the real-world. Finally, it shows the the main problems (rounded boxes) under con-
sideration in this thesis and how they fit within the safe RL literature.

[(s, a, s′,r), ...]

πb

π′

Learning

Improved Policy

Historical Data

Behavior Policy
Reinforcement

Figure 1.2: Interface of a reinforcement learning agent solving the safe policy improvement problem.

outperforms πb , otherwise, a decision maker would prefer to simply keep executing the
behavior policy.

We will consider the Safe Policy Improvement (SPI) criterion (Thomas et al., 2015b),
which formalizes this improvement requirement. Figure 1.2 shows the interface of an
agent that optimizes the SPI criterion. We observe that besides the dataset of historical
data, the agent also gets as input the behavior policy πb . If an algorithm has a high
probability of returning a policy π′ that outperforms πb , we say this algorithm satisfies
the SPI criterion.

In Figure 1.1, the connection between the offline training challenge and the safe pol-
icy improvement problem is clear from the problem definition. The connection from the
data efficiency challenge is related to the limited amount of data available, an inherent
property of offline RL since the agent does not interact with the environment. This issue
impacts directly the performance of the policy computed by the agent.

1

6 1. INTRODUCTION

Π

Γ

All policies

Safe policies

Figure 1.3: Policy space and set of safe policies.

1.4.2. SAFETY CONSTRAINTS IN REINFORCEMENT LEARNING

We also investigate the Constrained Reinforcement Learning (CRL) problem, where the
optimal policy must satisfy a set of safety constraints. Relying on the reward function
to account for safety can be impractical. Consider for instance an autonomous vehicle
that wants to minimize the time to reach its destination, it could end up driving at high
speeds putting the lives of its passengers at risk. In this task, safety has a higher priority
than performance, so it is better to drive cautiously and avoid risking the passengers’
well-being. At the same time, driving too slow may lead to a failure in delivering the
passenger on time. Therefore, we must find a trade-off between safety and performance,
which is not easily compiled in the reward function. It is more practical to consider a
signal dedicated to safety and define constraints with respect to this safety signal, letting
the algorithm find this trade-off automatically (Hayes et al., 2021; Roy et al., 2021).

Many algorithms have been proposed for CRL (Achiam et al., 2017; Efroni et al., 2020;
HasanzadeZonuzy et al., 2021; Ray et al., 2019; Yang et al., 2021, 2020b), but they often
only focus on the safety of the final policy, meaning they might violate the safety con-
straints during the learning process. This approach may be suitable for situations where
a perfect simulator is available, which, unfortunately, is not always the case as we men-
tioned earlier. Therefore, we investigate how to learn without violating the safety con-
straints.

Figure 1.3 shows the space of policies in CRL. Π represents the policy space and Γ

indicates the set of policies that satisfy the safety constraints. The objective in CRL is
to find a policy in Γ with the best performance. From the safe exploration perspective,
the challenge is to ensure that in every episode a safe policy π ∈ Γ is executed during the
learning process.

As Figure 1.1 shows, we consider this problem from both branches of SRL. As García
and Fernández (2015) observe, the constraints change which policies are optimal, there-
fore, the problem falls in the alternative criteria branch. But, we also consider this prob-
lem from the safe exploration perspective, since we are interested in always ensuring the
policy executed respects the safety constraints, even while the agent is still learning.

1.5. RESEARCH GOALS
As discussed so far, we are interested in making RL algorithms more safe and reliable,
such that they eventually can be deployed directly to real world tasks. In other words, we
would like to alleviate the dependency on simulators while training RL agents. As already
mentioned, many challenges could be tackled to help with this task, but we narrow our

1.5. RESEARCH GOALS

1

7

scope to two of them:

i. expanding the reach of reliable offline RL, and

ii. developing new methods to ensure safety during exploration of online RL.

Considering that without making assumptions about the underlying problem, it is
hardly possible to make any progress in safe RL, our first research question (RQ) is related
to what kind of prior knowledge we may have about the problem.

RQ 1. What kinds of prior knowledge can an expert reasonably provide re-
garding the underlying problem? How to integrate such knowledge into safe
reinforcement learning algorithms?
Overall, RL handles an extensive set of problems. While this expands the
potential applications of RL, it also contributes to its instability. It is diffi-
cult to make claims about the safety and reliability of RL algorithms given
such a large class of problems. Assuming an expert provides a model of the
underlying problem would bypass this issue. However, such a model might
contain errors that could make this approach unreliable. Nevertheless, an
expert probably has insights regarding the structure present on the prob-
lem of interest. Such structure would allow a safe RL agent to reason about
specific problems. This way, we may consider specific classes of problems
to make statements about the safety and reliability of RL algorithms. This
approach also exposes our assumptions, which, in the future, can help de-
cision makers evaluate if the algorithms we are proposing are suitable for
their applications.

Regarding the first challenge, previous offline RL algorithms guarantee to return a
policy with reasonable performance, by relying on the behavior policy (Laroche et al.,
2019; Petrik et al., 2016; Thomas et al., 2015b). This way, when historical data and the
behavior policy are available, we can use these algorithms to compute an improved pol-
icy with high confidence. Unfortunately, the amount and quality of such data are not
guaranteed, there might be little data available or the coverage of the problem might be
limited. This can make these algorithms overly conservative, leading them to always rely
on the behavior policy. The dependency on the behavior policy is another concern since
the absence of such policy precludes the use of these algorithms. These issues lead us to
the following three research questions.

RQ 2. Considering that real world data is limited, how to improve the sam-
ple complexity of safe policy improvement algorithms to make the most of
the data available?
When we consider the costs of interacting with the environment to col-
lect the historical data, we may notice that many applications have limited
amounts of historical data. However, it is still important to compute im-
proved policies and avoid the overly conservative strategy that always relies
on the behavior policy. We may use some prior knowledge regarding the

1

8 1. INTRODUCTION

problem class and compute new policies even if the amount of data avail-
able is small. This approach helps us ensure we make the best use of the
data available.

RQ 3. Since we do not control the quality of the data available, how to ensure
we still can compute improved policies even when the coverage of the prob-
lem is limited?
In offline RL, the agent has no control over how the data was collected.
Therefore, the data might be unbalanced. This means that some regions
of the environment can have little support, in which case being able to gen-
eralize the available data to the unsupported states is crucial while looking
for a better policy.

RQ 4. Assuming we only have access to a set of past trajectories, that is with-
out access to the behavior policy, can we still develop offline RL with improve-
ment guarantees?
While a considerable number of RL algorithms have guarantees of returning
a reasonable policy in the offline setting, these algorithms require access to
the policy that collected the data, which may not be available. In this case,
it is interesting to investigate if access to the behavior policy is strictly re-
quired. Finding algorithms with improvement guarantees even when the
behavior policy is another way we can also expand the reach of offline RL.

There is also some prior work related to our second challenge, for instance, some
methods can learn a policy that respects the safety constraints by interacting with the
environment (Efroni et al., 2020; Zheng and Ratliff, 2020). Unfortunately, most of these
approaches do not satisfy the safety constraints during the learning process. Therefore,
they are mostly confined to settings where a perfect simulator is available and can be
used to train a safe policy that only later is deployed. This makes these algorithms inad-
equate for safe exploration. As we mentioned before, the usual way to develop methods
for safe exploration is to rely on some kind of domain knowledge. Finding new types
of prior knowledge that provide safe exploration diversifies the repertoire of SRL algo-
rithms. In this way, we hope the user can easily check what type of prior knowledge is
available on its application and deploy the corresponding SRL agent safely. This moti-
vates the next two research questions.

RQ 5. Given a partial model related to the safe dynamics, how can a CRL
agent learn to optimize its task without violating its safety constraints?
Considering that the deployment of RL typically requires a reasonable un-
derstanding of safety-related matters, we may assume that such knowledge
is given by an expert. This can be expressed by a concise abstract model.
Since we do not make any assumption on the task at hand, it is still nec-
essary to learn how to optimize the underlying task. The challenge is to

1.6. CONTRIBUTIONS

1

9

ensure that, even while still learning, the policy being executed by the agent
is always safe.

RQ 6. What is the impact of the safety constraints on the performance of an
agent that explores safely?
Even considering some type of prior knowledge, this agent still has some
uncertainty about the environment dynamics. Therefore, the agent still
must explore. This leads to a new perspective on the classic exploration-
exploitation dilemma faced by RL agents, where the agent must visit new
states cautiously, to avoid violating the safety constraints. We want to inves-
tigate how this caution affects the learning process, comparing for instance
with an unconstrained agent.

In summary, Research Question 1 provides the basis to Research Questions 2 and 3 as
well as Research Question 5. Research Questions 2 to 4 are dedicated to the reliability of
offline RL, while Research Questions 5 and 6 focus on safe exploration of CRL algorithms.

1.6. CONTRIBUTIONS
In this section, we present an overview of the thesis’ contributions.

Data efficiency in safe policy improvement (Chapter 3). Considering that real world
data is limited and expensive, we investigate how to improve the sample complexity of
safe policy improvement algorithms exploiting the structure of the problem. Most algo-
rithms with improvement guarantees in the offline setting consider unrestricted prob-
lems. This leads to general bounds that depend on the size of the state space. Unfortu-
nately, the state space can grow exponentially in the number of variables describing the
problem, and, consequently, the amount of data required by these algorithms to com-
pute better policies can be prohibitively large. Therefore, we investigate this problem for
different classes of problems, which allows us to obtain better estimates of the underly-
ing dynamics. In particular, we consider problems where the dynamics of each variable
depend only on a small subset of the remaining variables. Exploiting this structure, we
develop RL algorithms that require orders of magnitude fewer data to find better policies
than their counterparts that ignore such structure.

Generalization in safe policy improvement (Chapter 3). Exploiting the structure of
the problems allows us to generalize samples from one state to another. This is critical
for safe policy improvement when the behavior policy does not have good coverage of
the state-action pairs. For instance, if the behavior policy is deterministic, the agent is
not able to deploy a new policy without some generalization capability. By exploiting the
structure of the problem, we can infer the effects of an action in an arbitrary state if this
action was applied in similar states. For example, if in a state s1 all the data observed
takes action a1, the agent cannot apply action a2. But, when the agent has some obser-
vations where a2 was executed in s2, it may be able to infer the effects of a2 in the state s1,
if the agent knows that the states s1 and s2 are similar. This gives the agent the unique

1

10 1. INTRODUCTION

ability to confidently return policies that are significantly different from the policy that
collected the data.

Safe policy improvement without the baseline policy (Chapter 4). In the safe policy
improvement literature, most algorithms with improvement guarantees require access
to the behavior policy as a fallback mechanism, however, in some applications this policy
might not be available, for instance in cases where the decisions were made by a human
expert. We study how to handle this problem when the behavior policy is not available,
using an estimate of this policy. This brings such reliable algorithms closer to the basic
offline RL setting, where, in general, we do not assume to have access to the policy used
during data collection.

Exploiting partial knowledge of the system dynamics for safe exploration (Chapter 5).
We study how to ensure safety during the learning process in an online setting, that is,
the agent must learn but it is not allowed to violate the safety constraints. We propose to
use an abstraction of the safety dynamics that allows the agent to reason about the safety
of the policies it is deploying. Our agent keeps track of a set of probable models of the
environment and acts pessimistically with respect to them. This agent can explore the
environment optimistically with respect to the reward, without ever violating the safety
constraints.

1.7. OUTLINE
Chapter 2 starts by presenting a review of the basic models for sequential decision mak-
ing, how to represent the structure of the underlying problem, and how to describe the
desired behavior of the agent using constraints. Next, it gives a basic overview of how
to solve these problems through planning as well as reinforcement learning. Finally, it
presents a discussion of the safety challenges in reinforcement learning.

Chapters 3 to 5 contain the main contributions of the thesis. Chapters 3 and 4 are
dedicated to the reliability of offline RL algorithms, while Chapter 5 investigates the
safety of online RL algorithms.

In Chapter 3 we formalize the SPI problem, review the literature dealing with this
problem as well as algorithms that can solve it. Then, we present the factored SPI frame-
work, which can take into account the structure of the underlying problem. We show
that this approach has a lower sample complexity and better generalization capabilities.

Following up, in Chapter 4 we investigate the SPI in settings where the behavior pol-
icy is unknown. We show that using an estimate of the behavior policy, we can also get
safe policy improvement guarantees.

In Chapter 5 we focus on the online setting. We investigate how an RL agent can learn
by interacting with the environment without violating the safety constraints.

To conclude, Chapter 6 provides a discussion of the main results of the thesis and
pointers for future work. To help the reader the thesis includes lists of notations and
acronyms in Appendices A and B.

2
BACKGROUND

In this chapter, we review the framework used for sequential decision making under un-
certainty. We describe how to model such problems and how to represent their solu-
tions. Then, we present algorithms to solve them in settings with a known model. We
also discuss how to solve these problems when the model is unknown and learning from
experiences is necessary. Finally, we discuss the safety challenges in learning without
the model.

2.1. MARKOV DECISION PROCESSES
The Markov Decision Process (MDP; Puterman, 1994) is a mathematical framework com-
monly used to model the interaction between an agent and its environment (Figure 2.1).
Denoting the simplex set by P (Y), which indicate the set of probability distributions
over the finite set Y, we define an MDP M by a tuple 〈 S,A,P ,R,γ,µ, H 〉, where:

• S is a discrete set of states of the world,

• A is a discrete set of actions the agent can execute,

• P : S×A → P (S) is a transition function that describes how the environment
evolves, so P (s′ | s, a) is the probability of moving to s′ ∈ S after executing action
a ∈A in state s ∈ S,

• R : S×A→ [R⊥,R⊤] is a reward function, so R(s, a) indicates the reward obtained
after executing action a ∈A in state s ∈ S,

• γ ∈ [0,1] is a discount factor that captures the agent’s preference for immediate
rewards over future rewards,

• µ ∈ P (S) is a distribution over initial states, so µ(s) is the probability of the inter-
action between the agent and the environment start on state s ∈ S , and

• H ∈N∪ {∞ } is the horizon that indicates the number of times the agent interacts
with the environment.

11

2

12 2. BACKGROUND

® agent { environment

Ú state

8 reward

n action

Figure 2.1: Interaction between an agent and the environment described by an MDP.

Figure 2.1 shows how an agent interacts with its environment. Given the current
state of the environment, the agent chooses an action to execute. Then, the environment
changes to a new state according to the transition function. Finally, the agent observes
the new state and the reward obtained from the last interaction. This interaction repeats
until a termination criterion is met.

A solution for an MDP describes how the agent chooses the actions to be executed
in each interaction with the environment, and we call it a policy. In this section, we will
focus on infinite-horizon MDPs with the expected total discounted reward optimality
criterion, that is, we assume H = ∞ and γ < 1.1 In this case, the optimal solution can
be Markovian and stationary, meaning the decision at a given state is independent of
the states visited previously in any time step and does not change over time. Although
a deterministic policy is enough to represent the optimal policy for this setting, we will
consider randomized policies, which facilitates the exposition of this thesis. We define a
stationary randomized policy as a mapping from states to a distribution over actions:

π : S→P (A).

This way, when the environment is on a state s ∈ S, an agent following policy π(s) ∈
P (A) will execute action a ∈ A with probability π(a | s). We use π(s) = a to indicate a

deterministic policy π : S → A, that is, a policy that puts all the probability mass on a
single action π(a | s) = 1. We denote the set of policies by Π.

An optimal policy maximizes the expected return, defined by the the expected sum of
discounted rewards:

V (π,M) = E
S0∼µ,

St∼P (·|St−1,At),
At∼π(·|St)

[∞∑
t=0

γt R(St , At)

]
,

where the random variables St and At are distributed according to the policy π and the
dynamics of the MDP M .

We can define the expected value of following a policy π starting from state s as fol-
lows (Puterman, 1994):

V π(s) =
∑

a∈A
π(a | s)Qπ(s, a),

1We refer to Puterman (1994) and Mausam and Kolobov (2012) for alternative settings.

2.1. MARKOV DECISION PROCESSES

2

13

Algorithm 1 Value Iteration.

Input: MDP M = 〈 S,A,P ,R,γ,µ, H 〉
Input: ϵ : a precision parameter

1: V0(s) = 0, ∀s ∈ S
2: i = 0
3: repeat
4: i ← i +1
5: Vi (s) ← maxa∈A

[
R(s, a)+∑

s′∈SγP (s′ | s, a)Vi−1(s′)
]

, ∀s ∈ S
6: until |Vi (s)−Vi−1(s)| < ϵ, ∀s ∈ S
7: π(s) ← arg maxa∈A

[
R(s, a)+∑

s′∈SγP (s′ | s, a)Vi (s′)
]

, ∀s ∈ S
8: return π

where, Qπ(s, a) is the value of taking an action a on state s, assuming we keep following
the policy π:

Qπ(s, a) = R(s, a)+
∑

s′∈S
γP (s′ | s, a)V π(s′).

Intuitively, the function Qπ is the immediate reward plus the discounted value of each
future state weighted by the probability of reaching that state.

Given the value V of each state, we can compute the value of a policy π on the
MDP M based on the initial state distribution µ:

V (π,M) =
∑
s∈S

µ(s)V π(s).

The optimal solution for an MDP can be represented by a deterministic stationary
Markov policy π∗ whose value, denoted here by V ∗, dominates the value of any other
policy π in all states of the MDP (Puterman, 1994):

V ∗(s) ≥V π(s), ∀s ∈ S.

Now, given the optimal value function V ∗, we can extract the optimal policy π∗:

π∗(s) ∈ arg max
a∈A

[
R(s, a)+

∑
s′∈S

γP (s′ | s, a)V ∗(s′)

]
, ∀s ∈ S.

One way to compute an optimal policy for an MDP is to estimate the optimal value
function V ∗. We can accomplish that using the value iteration algorithm (Algorithm 1).
This algorithm starts with an arbitrary estimate of the value function (Line 1). Then, it
iteratively refines this estimate to make it approach the optimal value function by suc-
cessively applying the Bellman backup operator (Line 5). This process stops when the
value functions of two consecutive iterations are sufficiently close (Line 6).

The MDP framework is highly general and can represent a heterogeneous set of ap-
plications (Feinberg and Shwartz, 2002). However, specifying such models can be chal-
lenging when the state space is too large. In the next section, we present a framework
that facilitates this task, in which neither the states, transition function, or reward func-
tion are built explicitly (Sabbadin et al., 2020).

2

14 2. BACKGROUND

2.2. FACTORED MARKOV DECISION PROCESSES
A Factored Markov Decision Process (FMDP; Boutilier et al., 1995) is a model that com-
pactly describes the state spaceSof an MDPs with a set of state variablesX= { X1, · · · , Xn },
and each variable X might assume a value x from its domain dom(X). We define the do-
main of a set of variables ∆ ⊆ X as the Cartesian product of their respective domains
dom(∆) =×X∈∆dom(X). Then, we can define the state space of the MDP as the domain
of the set of state variables: S = dom(X). Two assumptions are commonly made that
allow us to compactly represent the transition function using a Dynamic Bayesian Net-
work (DBN; Dean and Kanazawa, 1989).

First, the outcome of each variable is independent of the outcome of the remaining
variables:

P (s′ | s, a) =
∏

X∈X
P (s′[X] | s, a),

where s[∆] ∈ dom(∆) denotes the value of the variables ∆ ⊆ X on the state s ∈ S2 and
P (x | s, a) is the probability of observing x ∈ dom(X) conditioned on the state action pair
(s, a) ∈ S×A.

Second, the dynamics of a state variable X ∈X for a given action a ∈A depend only
on its parents, a subset of the variables Paa(X) ⊆ X. For example, on Figure 2.2a the
parents of the state variable X2 are X1 and X2 as indicated by the highlighted arrows
leading to X ′

2. In this way, the probability distribution of each variable X ∈ X can be
conditioned only on Paa(X), instead of the the complete state s:

P (x | s, a) = P (x | s[Paa(X)], a), ∀x ∈ dom(X).

We can use a Conditional Probability Table (CPT) to represent this probability distribu-
tion, as Figure 2.2b exemplifies.

These assumptions yield a compact representation of the transition function:

P (s′ | s, a) =
∏

X∈X
P (s′[X] | s[Paa(X)], a). (2.1)

We denote the support of transition components that describe an FMDP by

Q =
{

(X , a,x) ∈X×A×
⋃
∆∈2X

dom(∆)

∣∣∣∣∣ x ∈ dom(Paa(X))

}
, (2.2)

where 2X the power set of the set of state variables X. The size of Q denotes the number
of transition components that must be estimated by a factored RL algorithm. We also
define Ds,a ⊆Q as the relevant transition components of a state-action pair (s, a) ∈ S×A:

Ds,a = { (X , a,x) ∈Q | x = s[Paa(X)] } , ∀s, a ∈ S×A. (2.3)

We may notice that different states may have transition components in common. This is
what allows a compact representation of the transition function.

2We use the brackets to emphasize that given a state s, we are interested in the values of a subset of the state
variables in s. In favor of clarity, we omit the set notation of singletons, so s[X] = s[{ X }] : ∀X ∈X.

2.2. FACTORED MARKOV DECISION PROCESSES

2

15

X1

X2

X3

a

X′
1

X′
2

X′
3

r

t t+1

(a) DBN of action a.

X1 X2 X′
2

■ □
■ ■ 0.5 0.5
■ □ 0.3 0.7
□ ■ 0.1 0.9
□ □ 0.2 0.8

(b) CPT of the state variable X2 and
action a.

X2 X3 r

■ ■ 3
■ □ 1
□ ■ 2
□ □ 0

(c) Local reward function.

Figure 2.2: A FMDP with 3 state variables.

Denoting Nn = {1, . . . ,n }, ∀n ∈ N, we can also succinctly represent the reward func-
tion by the sum of R local functions (Degris et al., 2008), respectively:

R(s, a) =
∑

i∈NR

Ri (s[∆i], a),

where Ri is the i -th local reward function that depends for the features ∆i ⊆ X. Intu-
itively, these local function only only depends a subset of the state variables as shown in
the following example.

Example 1 (An FMDP represented by a DBN.). Figure 2.2 shows an FMDP with 3 bi-
nary state variables { X1, X2, X3 } and a single local reward function. For an action a ∈A, it
shows the dependencies between state variables represented by a DBN, where the first layer
contains the state variables of the current time step t , while the second contains the state
variables of the next time step t +1 (Figure 2.2a). The figure also shows the future proba-
bility distribution of the state variable X2 represented by a CPT which is only conditioned
on the current values of the parents X1 and X2 (Figure 2.2b), and the local reward function
that is independent of the state variable X1 (Figure 2.2c).

While the size of each CPT is exponential on the number of parents, typically, the par-
ents of a state variable and action pair are only a subset of the state variables, ensuring
the size of the CPT remains small (Oliehoek et al., 2008). Representing the problem with
smaller CPTs can help an expert define the problem since, in this framework, it is not
necessary to enumerate all the combinations of state variables values (Sabbadin et al.,
2020). Moreover, different tools and languages can be used to specify FMDPs (Mausam
and Kolobov, 2012; Sanner, 2010; Younes and Littman, 2004). This representation also
facilitates the development of planning algorithms that exploit these problems’ struc-
ture to solve large MDPs efficiently. For instance, symbolic probabilistic planners use
decision diagrams to represent the value function and policy (Boutilier et al., 1999; Feng
and Hansen, 2002; Hansen, 2021; Hoey et al., 1999). This structure has also been ex-
ploited to develop heuristics for tree search algorithms (Geißer and Speck, 2018), to com-
pute reactive policies for problems with continuous state variables (Bueno et al., 2019),
and to generate abstractions that reduce the computational cost of the planning algo-
rithms (Chitnis et al., 2020; Dearden and Boutilier, 1997).

2

16 2. BACKGROUND

Due to their expressiveness, FMDPs have been used in several applications, for in-
stance, an intelligent assistant that helps maintain a safe operation of a power plant
and (Reyes et al., 2009), a hydroelectric reservoir system that regulates the water flow
in a dam (Reyes et al., 2015), and in recommender systems that identifies the topic of a
user’s session (Tavakol and Brefeld, 2014).

Besides benefiting planning algorithms, this structure can also be exploited by agents
learning the model of the environment, as we discuss in Section 2.4.

2.3. CONSTRAINED MARKOV DECISION PROCESSES
The MDP framework is primarily designed for problems with a single reward function.
However, many problems have multiple objectives that are not easily combined into a
single scalar (Roijers et al., 2013). For instance, it is not easy to define a signal that
combines efficiency and safety. Consider the case of an autonomous robot that must
navigate the surface of Mars without any accidents (Moldovan and Abbeel, 2012). To in-
crease the expressiveness of this model, one may consider constraining some of these
objectives, such that the agent still aims to maximize the main objective but still keeps
the remaining objectives bounded. This approach allows practitioners to directly spec-
ify the desired behavior of the agent (Kamran et al., 2022; Roy et al., 2021). Therefore, in
this setting, the agent’s goal is to find the policy with the highest return among those that
respect the constraints. These problems are usually modeled by a Constrained Markov
Decision Process (CMDP; Altman, 1999).

A CMDP is defined by a tuple M = 〈 S,A,P ,R,γ,µ, H ,C , ĉ 〉 where most elements are
the same as in an MDP except for

• C : S×A→ [C⊥,C⊤] that is a cost function, and

• ĉ ∈Rwhich is an upper bound on the expected accumulated cost.

Although we present CMDPs with a single cost function in favor of clarity, this model can
easily be extended to problems with multiple cost functions.

In this section, we will focus on problems with a finite horizon (H <∞) and no dis-
count (γ = 1). This way the optimal behavior might be different depending on how far
it is from the end of the episode, so we consider a policy indexed by the current time
step π : S×NH →P (A).

A policy π induces a state-action occupancy yt (s, a) = µt (s)π(a | s, t), where µt (s) is
the occupancy of the state s at time step t :

µt (s) =
{
µ(s) if t = 1,∑

s◦,a◦∈S×A yt−1(s◦, a◦)P (s | s◦, a◦) otherwise.

An optimal policy π∗ for a CMDP maximizes the expected accumulated reward and
has an expected accumulated cost lower than the upper bound ĉ:

max
π

V π
R (µ) =

∑
s∈S

µ(s)V π
R (s,1) = Eπ

[∑
t∈NH

Rt |µ
]

s. t. V π
C (µ) =

∑
s∈S

µ(s)V π
C (s,1) = Eπ

[∑
t∈NH

Ct |µ
]
≤ ĉ,

2.3. CONSTRAINED MARKOV DECISION PROCESSES

2

17

s00 s10 s20

s01 s11 s21

a,b
p

1−
p

a
r = 1
c = 1

b

a,b

p

1−p a c = 1

b r = 1

Figure 2.3: A CMDP with 6 states and two actions A= { a,b }. Costs and rewards with value 0 are omitted as well
as the probability of deterministic transitions.

where Rt and Ct are random variables indicating the reward and cost the agent receives
at time step t , respectively. The expected cost of following a policy π starting from state s
at time step t can be computed according to its occupancy measure y as follows:

V π
C (s, t) =

∑
s,a,k∈S×A×{ t ,··· ,H }

yk (s, a)C (s, a).

The expected value V π
R (s, t) is defined similarly replacing the cost function C by the re-

ward function R.

Example 2 (The optimal policy for a CMDP). Consider the CMDP from Figure 2.3. In
state s11 action b has no cost and gives a reward of 1, so the optimal policy always assigns
π(b | s11) = 1, which maximizes the reward and does not incur any cost. This way, all
the cost would come from the state s10: so we have V π

C (µ) = pπ(a | s10). Since only action
a gives a reward in state s10, the problem reduces to maxπ(a | s10) s. t. pπ(a | s10) ≤ ĉ.
For p ≤ ĉ the constraint cannot be violated, so the solution is π(a | s10) = 1 which gives
highest expected reward. For p > ĉ we can reformulate the constraint, obtaining π(a |
s10) ≤ ĉ

p . Since our objective is to maximize π(a | s10), we find that the optimal policy for

this problem is π∗(a | s10) = ĉ
p .

The following Linear Program (LP) solves a CMDP (Altman, 1999):

max
∑

s,a,t∈S×A×NH

yt (s, a)R(s, a) s. t. C1–C6. (LP1)

∑
s,a,t∈S×A×NH

yt (s, a)C (s, a) ≤ ĉ. (C1)

yt (s, a) ≥ 0 ∀s, a, t ∈ S×A×NH . (C2)

yt (s, a) =
∑

s′∈S
xt (s, a, s′) ∀s, a, t ∈ S×A×NH . (C3)∑

s◦,a◦∈S×A
xt−1(s◦, a◦, s) =

∑
a∈A

yt (s, a) ∀s, t ∈ S×NH \{1} . (C4)∑
a∈A

y1(s, a) = µ(s) ∀s ∈ S. (C5)

xt (s, a, s′) = P (s′ |s, a)yt (s, a) ∀s, a, s′, t ∈ S×A×S×NH . (C6)

2

18 2. BACKGROUND

In LP1, C1 bounds the expected cost, C2 ensures the occupancy measure is positve,
C3 shows the linear relation between y and x, C4 controls the inflow and outflow of each
state at each time step, C5 is the initial state distribution and C6 ensures the flow respects
the transition function. A solution for LP1 induces an optimal stochastic policy

π(a | s, t) = yt (s, a)∑
a′∈A yt (s, a′)

∀s, a, t ∈ S×A×NH . (2.4)

We refer to de Nijs et al. (2021) for a comprehensive discussion of the optimization of
CMDPs.

2.4. REINFORCEMENT LEARNING
Reinforcement Learning (RL; Sutton and Barto, 2018) is a research area concerned with
sequential decision making where the dynamics of the environment are unknown. In-
tuitively, it considers an agent interacting with an environment that can be modeled as
an MDP but without access to the transition and reward functions. In general, the agent
must learn to optimize its long-term return by interacting with the environment. This
raises a fundamental challenge in RL, the exploration-exploitation trade-off. Let us as-
sume an agent already has performed some interactions with the environment and it has
found a reasonable policy. Now it faces the question, should it explore new areas of the
environment in the hope of learning more and finding even better policies, or should it
exploit the current knowledge and keep executing the best policy it has at hand.

Numerous exploration strategies have been proposed to ensure the RL agent even-
tually finds an optimal policy (Amin et al., 2021; Tijsma et al., 2016). For instance, a Q-
learning agent might perform random exploration, such that, with a small probability, it
executes a uniformly random action; otherwise, it executes a greedy action with respect
to its current knowledge (Watkins, 1989).

Typically, the performance of RL algorithms is evaluated by two metrics (Li, 2012):

i. the sample complexity, related to the number of interactions the agent requires to
find an approximately optimal policy, and

ii. the regret, the difference between the performances of the policy executed and the
optimal policy.

The exploration strategy and performance of an RL algorithm are tightly connected
to how the agent computes its policy and the representations it uses. Overall, there are
two main approaches to update the policy: model-based and model-free (Sutton and
Barto, 2018, Chapter 8). In short, a model-based algorithm creates an estimate of the
MDP, which is used to compute the policy through planning, while a model-free ap-
proach computes the policy directly from the experiences with the environment.

Although model-based RL has a computational cost higher than model-free RL, both
in terms of memory, since it stores the model, as in terms of processing, since it includes
a planning phase, it provides many benefits that may offset these drawbacks (Moerland
et al., 2021, Section 7). For instance, it provides good data efficiency requiring a limited
number of interactions with the environment to find a near-optimal policy (Brafman and
Tennenholtz, 2002; Kearns and Singh, 2002). It also allows an agent to transfer knowledge

2.4. REINFORCEMENT LEARNING

2

19

from a source task to a similar target task, for instance, through the transition estimate
when only the reward function changes (Atkeson and Santamaría, 1997), or by reusing
experiences from the source task to estimate the model of the target task (Taylor et al.,
2008). Furthermore, such a strategy can also provide some generalization capabilities,
for example, allowing an agent to make predictions of unseen states and recover from
unexplored regions of the environment (Ponnambalam et al., 2021).

In the following sections, we will see how we can estimate the model of the environ-
ment and how this estimate can guide exploration. Later chapters further explore the
data efficiency of model-based approaches and exemplify other benefits, such as relia-
bility and safety.

2.4.1. MODEL LEARNING
In this section, we review methods to estimate the transition function of an MDP from
experiences, focusing on how they can exploit the structure of the environment. In
the follow-up section, we will see how these methods can be used to develop sample-
efficient RL algorithms.

One way to estimate such models is using the Knows What It Knows (KWIK; Li et al.,
2011) framework, developed to help active agents stay aware of under-explored parts of
the environment. A KWIK learner must only return ϵ-accurate predictions with high
probability 1 − δ, otherwise it should return “I do not know” (⊘). However, a KWIK
learner can only return ⊘ a limited number of times bounded by a function polynomial
in the parameters of the problem. We say an algorithm is KWIK-admissible if it satisfies
such requirements.

This way, a KWIK learner can be used by model-based RL algorithms to learn the
transition function of a flat MDP or the transition components of an FMDP. Further-
more, this framework is particularly suitable to model-based RL since it explicitly indi-
cates the epistemic uncertainty of the model, that is, the lack of knowledge about certain
parts of the environment (Hüllermeier and Waegeman, 2021). In other words, a KWIK
learner provides the means to learn the dynamics of the environment and is able to in-
dicate which regions of the state space can be further explored.

When queried for the transition function of a state-action s, a a KWIK algorithm K

returns the estimated distribution or ⊘ depending if s, a is known or not:

K (s, a) =
{

P̂ (· | s, a) if (s, a) ∈K
⊘ otherwise,

where K ⊆ S×A is the set of known state-action pairs and P̂ (· | s, a) is the Maximum
Likelihood Estimate (MLE) of the transition function of the state action pair s, a ∈ S×A.

In the remainder of this section, we describe how to defineK and P̂ (· | s, a) depending
on the structure of the problem and the available prior knowledge.

LEARNING (FLAT) MDPS

To estimate the transition of a flat MDP, we must keep track of two types of counters:

• η(s, a): number of times action a ∈A was executed on state s ∈ S, and

2

20 2. BACKGROUND

• η(s, a, s′): number of times state s′ ∈ S was observed after executing action a ∈ A
on state s ∈ S.

Then, the MLE of the transition function is defined as:

P̂ (s′ | s, a) = η(s, a, s′)
η(s, a)

, ∀s, a, s′ ∈ S×A×S. (2.5)

In this case a KWIK learn algorithm defines the set of known state-action pairs as
follows:

Km = {
(s, a) ∈ S×A

∣∣ η(s, a) ≥ m
}

, (2.6)

where m is a minimum number of observations to consider the state-action pair (s, a)
as known, defined according to the required precision ϵ and the expected level of confi-
dence 1−δ.

LEARNING FACTORED MDPS

To estimate the dynamics of an FMDP, we will first consider the case where the structure
is given, that is, we know the parents of each state variable and action pairs Paa(X). We
start showing how to estimate the dynamics of individual components and later show
how to combine them to estimate the full transition function.

We use two types of counters to estimate the CPT of a variable X ∈X and action a ∈A:

• η(x, a): number of times action a ∈ A was executed on a state s ∈ S where the
parents of X were on the configuration x ∈ dom(Paa(X)), that is s[Paa(X)] = x, and

• η(x, a, x ′): number of times a state s′ ∈ S for which the value of X is x ′ ∈ dom(X)
was observed after action a ∈A was executed on a state s ∈ S where the parents of
X have the configuration x ∈ dom(Paa(X)), that is, s′[X] = x ′ and s[Paa(X)] = x.

Using these counters we can estimate the distribution of each entry of the CPT:

P̂ (x ′ | x, a) = η(x, a, x ′)
η(x, a)

, ∀(x ′,x) ∈ dom(X)×dom(Paa(X)). (2.7)

Now, we can define a KWIK algorithm K X ,a that learns the distribution of a compo-
nent of the FMDP related to the variable-action pair (X , a) ∈X×A. Given a state s ∈ S,
depending on the counter η(s[Paa(X)], a), this algorithm returns the estimated distribu-
tion or ⊘:

K m
X ,a(s) =

{⊘ if η(s[Paa(X)], a) < m,

P̂ (· | s[Paa(X), a]), otherwise,

where m is defined according to the precision and confidence level required.
Next we need to define a way to estimate the transition function of the MDP. With

that purpose, we define a new KWIK algorithm that uses a subalgorithm K X ,a for each
variable-action pair (X , a) ∈ X×A. This algorithm only considers a state-action pair
(s, a) ∈ S×A as known, if all the subalgorithms related to the action a consider s known:

Km⃗ =
{

(s, a) ∈ S×A
∣∣∣ K

m⃗i
Xi ,a(s) ̸=⊘,∀Xi ∈X

}
. (2.8)

2.4. REINFORCEMENT LEARNING

2

21

Finally, replacing each transition component from Equation 2.1 by the respective es-
timate, we obtain a new estimate of the known components of the transition function:

P̂ (s′ | s, a) =
∏

X∈X
P̂ (s′[X] | s[Paa(X)], a), ∀s, a, s′ ∈Km⃗ ×S. (2.9)

Similar to the KWIK algorithm for flat MDPs, when queried for the transition func-
tion of a state-action s, a ∈ S×A the KWIK algorithm of an FMDP returns the estimated
distribution or ⊘ depending if s, a is known or not:

K (s, a) =
{

P̂ (· | s, a) if (s, a) ∈K
⊘ otherwise.

In the next section, we present algorithms that can be used when the structure of the
problem is unknown.

STRUCTURE LEARNING

When the structure is unknown the subalgorithm K X ,a needs to initially search for the
set of parents Paa(X). This problem has been extensively studied (Chakraborty and
Stone, 2011; Degris et al., 2006; Diuk et al., 2009; Strehl et al., 2007). Here we present
two structure learning algorithms with KWIK guarantees.

Given a maximum in-degree d , which bounds the size of the set of parents Paa(X),
these algorithms need to choose a candidate from CX

d that contains the true set of par-

ents, where CX
d is the collection of subsets of X of size d . For example, Figure 2.4 shows

the set of possible parents for a given state variable and action. Given the maximum
in-degree d , the structure learning algorithm can consider only the candidates to the
respective column of the diagram.

The Structure Learning (SL) algorithm (Strehl et al., 2007) relies on the fact that the
probability distribution of the variable X and action a is independent of non-parents
given the true parents. To choose the set of parents the SL algorithm estimates the dis-
tribution for each pair of candidates (∆i ,∆ j) ∈ CX

d ×CX
d . Given a state s and action a, this

algorithm chooses ∆i as parents if two conditions are met:

i. it has collected enough samples of the realizations of ∆i , a and all the other candi-
dates were in the same configuration as in state s:

η(s[∆i ∪∆ j], a) ≥ m, ∀∆ j ∈ CX
d \ {∆i } , and (2.10)

ii. the distribution estimate of all pairs of candidates that include ∆i are similar, that
is, the distribution divergence between different pairs that include ∆i is smaller
than a given ϵ1:∥∥P̂ (· | s[∆i ∪∆ j], a)− P̂ (· | s[∆i ∪∆k], a)

∥∥
1 ≤ ϵ1, ∀ j ,k ̸= i . (2.11)

In this way, given a state-action pair s, a, the SL algorithm returns the probability distri-
bution of X if there is a candidate ∆i that satisfies (denoted by |=) both conditions:

K X ,a(s) =
{⊘ if Ø∆i ∈ CX

d s.t. ∆i |= (2.10) and ∆i |= (2.11),

P̂ (· | s[∆i ∪∆ j], a) where j ̸= i , otherwise.

2

22 2. BACKGROUND

1

1

1

1 1

1

1

1

0 1 2 3

Figure 2.4: Set of candidate parents for an arbitrary state variable and action, grouped by size.

The k-meteorologists algorithm (Diuk et al., 2009) makes the same assumptions as
the SL algorithm and initializes the set of tracked candidates Cand with CX

d . However, it
relies on a different fact to find the best candidate: the squared error of the distribution
function computed according to a candidate containing the true parents is smaller than
the one computed without the true parents.

Given a transition sample (s, a, s′) ∈ S×A×S, the squared error of the set of parents
∆⊆X is given by

e = (1− P̂ (s′[X] | s[∆], a))2.

Therefore, this algorithm keeps track of the accumulated squared error for each pair of
candidate parents and their number of mismatches ci , j . After two candidates have dis-
agreed enough times (ci , j ≥ c), the k-meteorologists algorithm discards the one with the
largest accumulated error. When asked for the distribution of variable Xi for a given
state-action pair, the k-meteorologists algorithm returns the average of the probability
distribution of the remaining candidates (Cand), if they are confident in the distribu-
tion (η(s[∆i], a) ≥ m) and if they agree on such:∥∥P̂ (· | s[∆i], a)− P̂ (· | s[∆ j], a)

∥∥
1 < ϵ1, ∀∆i ,∆ j ∈ Cand×Cand;

otherwise, it returns ⊘.
Both the SL and k-meteorologists algorithms can estimate the FMDP’s transition

function following the scheme from Equations 2.8 and 2.9 to combine the estimate of
all the state variables. In the next section, we describe RL agents that use the algorithms
from this section to explore the environment effectively.

2.4.2. MODEL-BASED EXPLORATION
Sophisticated exploration strategies can reduce the number of interactions necessary to
find an optimal policy. For instance, the R-max algorithm (Brafman and Tennenholtz,
2002) is a model-based RL algorithm that incentivizes the agent to visit under-explored
parts of the environment to find an accurate estimate of the transition function quickly.
The R-max, proposed for flat representations, has been adapted for different classes of
MDPs (Guestrin et al., 2003).

Algorithm 2 shows a generalization of the R-max algorithm coupled with a KWIK al-
gorithm to estimate the transition function and keep track of the set of state-action pairs

2.4. REINFORCEMENT LEARNING

2

23

Algorithm 2 KWIK-R-max (Li et al., 2011).

Input: K : a KWIK algorithm with precision ϵ and confidence δ.
1: for s, a ∈ S×A do
2: Initialize K (s, a)
3: Rtotal(s, a) ← 0
4: η(s, a) ← 0
5: end for
6: for t ∈ 1,2, · · · do
▷ Update the empirical MDP M̂

7: for s, a ∈ S×A do
8: if K (s, a) =⊘ then

9: P̂ (s′ | s, a) ←
{

1 if s′ = s

0 othewise
: ∀s′ ∈ S

10: R̂(s, a) ← R⊤
11: else
12: P̂ (· | s, a) ←K (s, a)
13: R̂(s, a) ← Rtotal(s,a)

η(s,a)
14: end if
15: end for

▷ Compute new policy.
16: π← Value Iteration(M̂)

▷ Interact with environment.
17: Observe the current state of the environment st
18: Execute action at ∼π(· | st)
19: Observe reward rt and new state of the environment st+1

▷ Update counters.
20: η(st , at) ← η(st , at)+1
21: Rtotal(st , at) ← Rtotal(st , at)+ rt
22: Present st+1 to algorithm K (st , at)
23: end for

that are still considered unknown (Li et al., 2011). This KWIK algorithm must be cho-
sen according to the class of the underlying MDP. The overall strategy of this algorithm
is to incentivize the agent to visit states that can reduce the parametric uncertainty of
the model. Therefore, it computes a policy (Line 16) using an augmented version of
the estimated MDP M̂ assuming that unknown state-action pairs provide high reward
(Line 10). This way, the agent may visit such state-action pairs, improving the estimate
of the respective transition function (Line 22). Although we describe this algorithm with
an explicit estimate of the reward function, this task could also be executed by a KWIK
algorithm.

R-max has a sample complexity polynomial in the number of states, which means
exponential in the number of state variables. Factored RL algorithms can have a sam-
ple complexity that scales only polynomially in the number of parameters of the FMDP
(Guestrin et al., 2002; Kearns and Koller, 1999; Strehl, 2007). That is, an RL agent that
knows the structure of its environment dynamics can take less sub-optimal actions. R-
max’s extensions also have been proposed for FMDPs with different assumptions regard-

2

24 2. BACKGROUND

update

data collection

learn

buffer deploymentdata collection

update

buffer
data collection

(a) On-policy.

update

data collection

learn

buffer deploymentdata collection

update

buffer
data collection

(b) Off-policy.

update

data collection

learn

buffer deploymentdata collection

update

buffer
data collection

(c) Offline.

Figure 2.5: Types of reinforcement learning algorithms (adapted from Levine et al., 2020).

ing the prior knowledge about the structure of the DBN. As we have seen in Section 2.4.1,
Strehl et al. (2007) and Diuk et al. (2009) consider settings where the structure is un-
known, assuming a bound on the number of parents. Chakraborty and Stone (2011) also
consider settings where the structure is unknown, assuming the MDP is ergodic, also
called a uni-chain MDP (Gattami et al., 2021), where all states are reachable from any
state following any policy.

There are also more refined exploration methods based on the model estimate. For
instance, the agent might choose optimistically from a set Σ of probable MDPs (Auer
and Ortner, 2006; Jaksch et al., 2010; Strehl and Littman, 2008). This method is similar
to solving bounded-parameter Markov decision processes optimistically (Givan et al.,
2000). Since the size of Σ is inversely proportional to the visits counter, the incentive
to visit each state varies according to the number of times the state has been visited.
Jonsson and Barto (2007) propose an exploration strategy to learn the DBN structure of
the FMDPs based on the local entropy gain of each action.

2.4.3. FROM ONLINE TO OFFLINE
We can categorize RL algorithms according to how they use the experiences (transitions
or trajectories) collected to update the policy (Levine et al., 2020).

• On-policy algorithms update the policy immediately after each experience is col-
lected. This way, the policy is always adjusted using data collected following the
current policy. An example is the SARSA algorithm (Rummery and Niranjan, 1994).

• Off-policy algorithms store the experiences and update the policy in the future. In
this setting, the data used to update the current policy may have been collected
from a different policy, which can increase the variance of the algorithm. An ex-
ample is the Q-learning algorithm (Watkins, 1989).

• Offline algorithms are designed for settings where the agent does not have direct
interactions with the environment. In particular, the agent only has access to ex-
periences collected by a behavior policy. An example is the Fitted Q Iteration algo-
rithm (Ernst et al., 2005).

Figure 2.5 shows the schematics of each category. In Figure 2.5a, after a few episodes,
the agent uses the trajectories collected to update the policy. In Figure 2.5b, the agent
stores the trajectories in a buffer, which is used to update the policy, effectively allowing
the agent to use older trajectories to update the current policy. Finally, in Figure 2.5c, a

2.5. SAFE RL

2

25

s,a
+4

+2

+1
1 2 4

0.2

0.5

0.3

Return

Probability

Figure 2.6: Trajectories generated by a policy, inducing a distribution of returns (adapted from Munos, 2018).

buffer of trajectories D is collected using a behavior policy πb , which is fed to the agent.
Then, the agent must compute a new policy without getting feedback from the environ-
ment. After the agent finishes, the new policy is deployed in the environment.

Both on-policy and off-policy algorithms can be considered online since the agent
eventually receives some feedback from the environment in both cases. The model-
based algorithms described in the previous section may be considered off-policy since
the model’s estimate works as a buffer of experiences.

We could use an off-policy algorithm directly on the offline setting; however, an op-
timistic approach, such as the one used by the R-max algorithm, could return a policy
inadequate for the offline setting that would direct the agent to unknown parts of the
environment. Another challenge in the offline setting is the overestimation of the values
in parts of the problem that have not been seen enough, which can be propagated, caus-
ing a large variance in the performance of the algorithms (Fujimoto et al., 2019; Jin et al.,
2021). We will investigate this issue further in Chapters 3 and 4.

2.5. SAFE RL
In RL, the concept of safety has been used extensively. It may refer to the most intuitive
idea of avoiding undesirable outcomes, but it can also refer to how reliable the policy
executed by the agent is (García and Fernández, 2015; Pecka and Svoboda, 2014). In the
following sections, we discuss both directions from the perspective of this thesis.

2.5.1. ALTERNATIVE CRITERIA
Traditionally, RL optimizes the expected return. However, this criterion neglects other
attributes on the return distribution, such as the variance and the worst case. To account
for these aspects, we can use alternative criteria that make the policy more reliable and
stable.

RL agents must handle two sources of uncertainty (Clements et al., 2019; Rigter et al.,
2021). For each, there are different criteria that lead to more reliable performance.

i. The aleatoric uncertainty is related to the inherent randomness of the environ-
ment. This means a policy may generate different trajectories, which induces a
distribution of returns, see Figure 2.6 for an example. A high return variance im-
plies a larger risky so a risk-averse agent might prefer policies with lower variance
in the return distribution (Gosavi, 2009). Another option is to bound the tail of the
return distribution, which can be formalized with the conditional value-at-risk cri-
terion (Chow et al., 2018a; Yang et al., 2021, 2022).

2

26 2. BACKGROUND

Probable MDPs

Policy

Nature
Worst-case MDP

Figure 2.7: Pessimistic perspective of an RL agent with epistemic uncertainty. The agent has a set of probable
MDP and assumes nature will choose the worst.

ii. The epistemic uncertainty is related to the agent’s lack of knowledge about the dy-
namics of the environment, in other words, the model uncertainty (Sharma et al.,
2019). As the agent interacts with the environment and collects new observations,
the epistemic uncertainty can be reduced. One may imagine that the epistemic
uncertainty induces a set of probable environments Σ (Figure 2.7). In this case, a
conservative agent might prefer a robust policy, assuming that nature will choose
the worst environment from Σ (Lim et al., 2016; Wiesemann et al., 2013).

The epistemic uncertainty is an inherent issue in the offline setting (Figure 2.5c).
Since the agent only has access to a fixed dataset of past trajectories, it is only able to
reduce its epistemic uncertainty to a limited degree. This limitation makes it challenging
to ensure a policy computed offline will have a reasonable performance when deployed.
Such lack of confidence could prevent decision makers from effectively deploying a pol-
icy proposed by an offline RL algorithm. Fortunately, an emergent area of RL is develop-
ing reliable agents guaranteed to return policies with reasonable performance (Thomas
et al., 2015b).

There are two main strategies to handle these issues (Jin et al., 2021):

S.i. constraining the new policy to stay close to the policy that collected the data, and

S.ii. penalizing actions that appear less frequently in the dataset.

In Chapters 3 and 4, we focus on the first strategy (S.i.), considering the reliability of
the offline algorithms with respect to the behavior policy πb . In particular, we will con-
sider the setting where both the experiences with the environment D and the behavior
policy πb are available to compute a new policy π′. We will investigate how to ensure the
new policy π′ does not underperform compared to πb .

Another way to compute a policy more reliable is to define constraints explicitly, for
instance, using CMDPs (Section 2.3). This model allows us to impose constraints on the
behavior of the agent through the cost function. When the components of the CMDP
are unknown (Geibel, 2006), we call it the Constrained Reinforcement Learning (CRL)
problem. Since the policy with the highest expected return may violate the constraints,
the agent may also need to sacrifice some of its performance to achieve safe behavior,
meaning this method changes the optimality criterion. This problem has also been in-
vestigated from the safe exploration perspective, where the cost function is interpreted
as a safety signal, for instance, indicating that the agent entered an unsafe state (Calvo-
Fullana et al., 2021), as we discuss in the next section.

2.6. SUMMARY

2

27

2.5.2. SAFE EXPLORATION
In certain applications, physical constraints must be taken into account. For instance,
while controlling a robotic arm, we must avoid overheating. These constraints can cre-
ate challenges around interacting directly with the environment in an online setting
since the only way a vanilla RL observes the effects of a particular policy is by execut-
ing it. Therefore, to avoid violating the safety constraints, one often must use some prior
knowledge, which allows the agent to infer if a specific policy is safe or not.

Such prior knowledge can take multiple forms. An agent learning from demonstra-
tions gets early access to promising and safe trajectories, which reduces the time ran-
domly exploring the environment and the risks involved in doing so (Argall et al., 2009;
Ravichandar et al., 2020). The advice from a teacher can provide a set of safe actions for
the agent to choose from or correct the actions taken by the agent (Alshiekh et al., 2018;
Jansen et al., 2020). The agent can use an initial safe policy to collect trajectories until
it is confident enough to deploy a new policy (Berkenkamp et al., 2017) or, as a fallback
mechanism, in case the agent visits unexpected states (Mao et al., 2019).

In Chapter 5, we consider the setting where knowledge about the safety dynamics is
provided, so the agent can evaluate the safety of a policy and avoid violating the safety
constraints in a CMDP (Section 2.3). In this setting, we consider a policy with an ex-
pected cost larger than ĉ unsafe. Our goal is to ensure that, at any episode, the policy
executed does not violate the cost-bound.

2.6. SUMMARY
This chapter presents a short introduction to data-driven sequential decision making
from a probabilistic planning perspective using a model-based approach. We refer to
Mausam and Kolobov (2012) for alternative probabilistic planning algorithms and Sut-
ton and Barto (2018) for a comparison between model-based and model-free in rein-
forcement learning. Finally, García and Fernández (2015) extensively discuss the differ-
ent perspectives on safe reinforcement learning.

3
SAFE POLICY IMPROVEMENT IN

FACTORED ENVIRONMENTS

In this chapter, we investigate how safe policy improvement (SPI) algorithms can exploit
the structure of factored Markov decision processes. To facilitate the application of re-
inforcement learning in the real world, SPI provides probabilistic guarantees that policy
changes in a running process will improve the performance of this process. However, most
SPI algorithms require large amounts of historical data to become confident enough to
change the policy. Factored reinforcement learning, on the other hand, makes good use of
the data provided. These algorithms achieve better sample complexity by exploiting inde-
pendence between features of the environment, but they lack improvement guarantees.

We propose a factored SPI algorithm that improves the sample efficiency of the safe policy
improvement with baseline bootstrapping algorithm by exploiting the factored structure
of the environment. Our first result is a theoretical bound that is linear in the number
of parameters of the factored representation instead of the number of states. The empir-
ical analysis shows that our method can improve the policy using a number of samples
potentially one order of magnitude smaller than the flat counterpart.

This algorithm requires prior knowledge of the underlying structure, therefore, to over-
come this limitation, we enhance it with different structure learning methods. In well-
factorized domains, the new algorithms need fewer samples to improve the policy com-
pared to a flat SPI algorithm, demonstrating a sample complexity closer to the factored
SPI algorithm that knows the structure. This indicates that the combination of factored
SPI and structure learning algorithms is a promising solution to real world problems in-
volving many variables.

This chapter is based on papers presented at AAAI-19 and IJCAI-19 (Simão and Spaan, 2019a,b). An extended
abstract appeared at the IJCAI-19 Doctoral Consortium (Simão, 2019).

29

3

30 3. SAFE POLICY IMPROVEMENT IN FACTORED ENVIRONMENTS

As discussed in Sections 1.3 and 2.5, Safe Reinforcement Learning (SRL) aims to mit-
igate undesirable effects of RL algorithms (García and Fernández, 2015). In this chapter,
we consider the safety of offline RL algorithms and investigate how to make them more
reliable. In particular, we focus on the reliability of these algorithms compared to the
policy used to collect the data. Concerning Research Question 1 on which class can facil-
itate the development of SRL, we constrain the problem to a Factored Markov Decision
Process (FMDP). This allows us to address Research Question 2 regarding the amount
of data these algorithms require and Research Question 3 on dealing with datasets that
have low coverage of the problem.

In Chapter 2, we saw that Reinforcement Learning (RL; Sutton and Barto, 2018) is
a framework for sequential decision-making and most RL research focuses on the on-
line setting, where the RL agent interacts directly with the environment and can learn
from the feedback it gets (Mnih et al., 2015; van Seijen et al., 2017). Nevertheless, learn-
ing from historical data can help bring RL to the real-world (Dulac-Arnold et al., 2021).
While the online setting might be the most efficient in simulations and in uni-device
system control such as drones or complex industrial flow optimization, many real world
tasks involve a distributed architecture. We may cite a few: demand-supply balance in
energy systems with distributed generation (Vázquez-Canteli and Nagy, 2019), choice of
medication in health-care (Liu et al., 2020), caching in communication networks (Qian
et al., 2019), and authentication of mobile devices in wireless networks (Liu et al., 2017;
Uprety and Rawat, 2021). These tasks entail a high parallelization of the trajectory col-
lection and strict communication constraints both in bandwidth and privacy (Féraud
et al., 2019). Therefore, rather than spending a small amount of computation after col-
lecting each sample/trajectory, it is more practical to collect a dataset using a behavior
policy and then train a new policy from it. This setting is known as batch RL (Lange et al.,
2012; Xie and Jiang, 2020), offline RL (Levine et al., 2020), fixed-dataset policy optimiza-
tion (Buckman et al., 2021), and batch policy optimization (Xiao et al., 2021b).

3.1. SAFETY IN OFFLINE REINFORCEMENT LEARNING
In the offline RL setting, the agent only has access to historical data collected with a
behavior policy πb , which might be unknown, as we will see in Chapter 4. In other words,
the agent does not interact directly with the environment (Section 2.4.3). In this setting,
there are two major tasks:

• off-policy evaluation, where, given a batch of past experiences, the RL agent must
estimate the performance of a candidate policy π, and

• policy optimization, where, given a batch of past experiences, the RL agent must
compute a candidate policy π.

Both these tasks have risks. In policy evaluation, we might overestimate the candidate’s
performance, while in policy optimization, we might compute a candidate with low per-
formance. In these two scenarios, the system’s performance could decrease compared
to the performance during data collection. Therefore, it is essential to ensure that π
outperforms the behavior policy πb ; otherwise, one would prefer to keep executing the

3.1. SAFETY IN OFFLINE REINFORCEMENT LEARNING

3

31

behavior policy πb to avoid such risks. From a reliability perspective, each of these tasks
imposes different challenges.

For the off-policy evaluation problem, it is necessary to have confidence in the es-
timated performance, considering the random nature of the previous experiences. Dif-
ferent methods have been proposed to improve the confidence in off-policy evaluation
algorithms using flat and factored representations of the problem (Hallak et al., 2015;
Thomas et al., 2015a).

For the policy optimization task, the RL algorithm must compute a new policy at least
as good as the behavior policy, and if it has a high probability of returning an improved
policy, this algorithm is considered safe (Cohen et al., 2018; Laroche et al., 2019; Petrik
et al., 2016; Thomas et al., 2015b). This problem is called Safe Policy Improvement (SPI;
Thomas et al., 2015b), and it will be the focus of this chapter.

However, a major challenge for SPI algorithms is that they rely on flat representa-
tions, which limits their scalability. In particular, when a set of features describe the
state space, the number of states grows exponentially in the number of features (Sec-
tion 2.2). In this case, the number of samples necessary to estimate the model or the
performance of a policy precisely might be prohibitive, making the application of flat
algorithms infeasible.

As we observed in Section 2.4.2, factored reinforcement learning can exploit inde-
pendence present in the environment and generalize past experiences to new states,
which allows an online agent to reduce the number of non-optimal actions it takes (De-
gris et al., 2006; Ross and Pineau, 2008; Strehl et al., 2007). However, such algorithms
have been proposed for online RL settings that ignore safety and in which an agent can
explore freely, often following the optimism in the face of uncertainty principle (Munos,
2014), which guides exploration towards less-visited parts of the environment. Unfor-
tunately, this strategy is not compatible with the offline setting since the agent does not
get any feedback from the environment to reduce its epistemic uncertainty. This chapter
aims to bridge the gap between safe and factored RL algorithms following a pessimism
in the face of uncertainty principle (Buckman et al., 2021; Jin et al., 2021; Rashidinejad
et al., 2021).

The first contribution of this chapter is a factored SPI algorithm that uses a factored
representation to estimate the dynamics of the environment, assuming that the struc-
ture of the problem is known a priori. We prove that by exploiting independence be-
tween state variables, our safe RL better estimates the environment dynamics and re-
quires fewer samples to improve the behavior policy. These results are demonstrated
empirically in three experiments with different domains and behavior policies. A high-
light of this algorithm is its capability to improve even when the behavior policy is deter-
ministic, which is a substantial limitation of previous SPI algorithms.

Nevertheless, this factored approach assumes that the local structure is known a pri-
ori, which might be impractical. For instance, in applications with many variables, it
is difficult for an expert to provide the exact structure of the problem. Therefore, it is
necessary to investigate how to relax this assumption without resorting to flat represen-
tations to maintain a good sample complexity. We aim to develop SPI algorithms that
are sample efficient even when the structure of the FMDP is unknown.

The problem of learning the structure has already been investigated from different

3

32 3. SAFE POLICY IMPROVEMENT IN FACTORED ENVIRONMENTS

perspectives. For example, algorithms have been proposed to improve exploration effi-
ciency in the online setting (Diuk et al., 2009; Strehl et al., 2007). However, these meth-
ods do not consider the safety of the learning agent also following the optimism in the
face of uncertainty, which is highly undesirable in a safe RL setting. Furthermore, off-
policy evaluation algorithms also have been coupled with structure learning algorithms
to reach higher accuracy (Hallak et al., 2015), but this approach does not indicate how
the candidate policy is computed.

Our second contribution addresses safety in environments with an unknown struc-
ture. We propose an SPI framework that can use different structure learning algorithms
to estimate the dynamics of the environment. We provide two algorithms that instantiate
the new SPI framework using different structure learning algorithms and prove that they
have safety guarantees. Our experiments compare these algorithms to the SPI algorithm
that has access to the structure of the problem (Section 3.3) and to an SPI algorithm that
ignores the underlying structure (Laroche et al., 2019). They show that, depending on
the structure learning algorithm and how well the problem can be factorized, this frame-
work can yield algorithms with performance competitive to an algorithm that knows the
structure.

Chapter Structure. First, we formalize the SPI problem and review previous algorithms
dealing with it (Section 3.2). Then, we present the new SPI algorithm for environments
with known factored dynamics, proving that this method is safe, and provide an empir-
ical evaluation of the new algorithm (Section 3.3). Next, we investigate the SPI problem
on factored environments with an unknown structure (Section 3.4). To conclude the
chapter, we describe a realistic case study that used these algorithms (Section 3.5) and
present some final remarks (Section 3.6).

3.2. SAFE POLICY IMPROVEMENT
This section reviews the offline policy optimization problem and state-of-the-art meth-
ods to solve it, which will be extended in the follow-up sections to factored MDPs.

3.2.1. RELIABLE OFFLINE RL: AN OVERVIEW

Classically, offline RL algorithms apply dynamic programming on the samples in the
dataset (Ernst et al., 2005; Lagoudakis and Parr, 2003). Laroche et al. (2019) showed that
in finite-state MDPs, all these algorithms converge to the same policy: the one that is
optimal in the MDP with the maximum likelihood given the batch of data. Petrik et al.
(2016) show that this policy is approximately optimal to the order of the inverse square
root of the minimal state-action pairs count in the dataset. Unfortunately, Laroche et al.
(2019) show that, even on small tasks, this minimal amount is almost always zero, and
that, as a consequence, it gravely impairs the reliability of the approach: naive dynamic
programming on the batch may return policies that perform terribly in the real environ-
ment. If a poor-performing policy were executed in distributed architectures such as the
ones mentioned above, the consequences would be disastrous as it would jeopardize a
high number of systems or even lives.

Several attempts have been made to design reliable offline RL algorithms, starting

3.2. SAFE POLICY IMPROVEMENT

3

33

with robust MDPs (Iyengar, 2005; Nilim and El Ghaoui, 2005), which considers the set
of plausible MDPs Σ given the dataset, also called the uncertainty set or robust MDP.
Overall, these methods search for the policy for which the minimal performance over
Σ is maximal. However, this approach traditionally tends to return overly conservative
policies (Russel and Petrik, 2019).

Xu and Mannor (2009) considered robust regret over the optimal policy: the algo-
rithm searches for a policy that minimizes the maximal gap with respect to the optimal
performance in every MDP of the uncertainty setΣ. However, they proved that even eval-
uating the robust optimal regret for a fixed policy is already NP-complete with respect to
the state and action sets’ size and the uncertainty constraints in Σ.

Later, Petrik et al. (2016) considered the regret with respect to the behavior policy per-
formance over the uncertainty set Σ. The behavior policy is called baseline in this con-
text. Similarly, they proved that simply evaluating the robust baseline regret is already
NP-complete. Concurrently, they also proposed the Reward-adjusted MDP (RaMDP)
algorithm following a strategy that penalizes less-visited state-action pairs (S.ii., Sec-
tion 2.5.1), although without theoretical guarantees. In this algorithm, the immediate
reward for each transition in the dataset is penalized by the inverse square root of the
number of samples in the dataset that have the same state and action as the transition
under consideration.

Recently, Laroche et al. (2019) proposed Safe Policy Improvement with Baseline Boot-
strapping (SPIBB), the first tractable algorithm with approximate policy improvement
guarantees. Its principle consists in guaranteeing safe policy improvement by constrain-
ing the trained policy as follows: it has to reproduce the baseline policy in the uncer-
tain state-action pairs. This chapter follows this research track, developing SPIBB algo-
rithms for FMDPs (Simão and Spaan, 2019a,b). Nadjahi et al. (2019) proposed Safe Pol-
icy Improvement with Soft Baseline Bootstrapping (Soft-SPIBB), which further improves
SPIBB’s empirical performance by adopting soft constraints. Note that this thread of re-
search is distinct from online safe policy iteration, such as (Kakade and Langford, 2002;
Papini et al., 2017; Pirotta et al., 2013; Schulman et al., 2015, 2017), because the online
setting allows them to perform more conservative updates.

High Confidence Policy Improvement (HCPI; Mandel et al., 2014; Paduraru, 2013;
Thomas et al., 2015b) is another theoretically-grounded and tractable family of frequen-
tist algorithms that rely on importance sampling estimates of the trained policy per-
formance. The algorithm by Mandel et al. (2014), based on concentration inequalities,
tends to be conservative and requires hyper-parameter optimization. The algorithms by
Thomas et al. (2015a) rely on the assumption that the importance sampling estimate is
normally distributed, which is false when the number of trajectories is small. The al-
gorithm by Paduraru (2013) is based on bias-corrected and accelerated bootstrap and
tends to be too optimistic. In contrast to the robust approaches, from robust MDPs to
Soft-SPIBB, HCPI may be readily applied to infinite MDPs with guarantees. However,
it is well known that the importance sampling estimates have high variance, exponen-
tial with the horizon of the MDP. The SPIBB algorithm has a linear horizon dependency,
given a fixed known maximal value and the common horizon/discount factor equiva-
lence: H = 1

1−γ (Kocsis and Szepesvári, 2006). Soft-SPIBB suffers a cubic upper bound,
but the empirical results indicate a linear dependency.

3

34 3. SAFE POLICY IMPROVEMENT IN FACTORED ENVIRONMENTS

Nadjahi et al. (2019) performed a benchmark on randomly generated finite MDPs,
baselines, and datasets. They report that the SPIBB and Soft-SPIBB algorithms are sig-
nificantly the most reliable, tying with RaMDP as the highest average performing algo-
rithms. Additionally, they perform a benchmark on a task with continuous state space,
where the SPIBB and Soft-SPIBB algorithms significantly outperform RaMDP (Petrik et al.,
2016) and Double-DQN (van Hasselt et al., 2016) both in reliability and average perfor-
mance. Soft-SPIBB particularly shines in the continuous state experiments, which we
revisit in Chapter 4.

3.2.2. OPTIMIZATION CRITERION

SPI addresses the question of how to compute a new policy π that outperforms the be-
havior policy πb with high confidence 1−δ, given a batch of previous interactions D and
an admissible error ζ. Before formalizing the safety criterion used in this chapter we
present a few definitions.

An episode τ is a sequence of interactions between the agent following a policy π
and the environment represented by [st , at ,rt , st+1, · · ·] where at ∼ π(· | st) is the action
executed in the state st , rt = R(st , at) is the reward obtained and st+1 ∼ P (· | st , at) is the
state observed afterwards. A dataset of previous experiences is represented by a set of N
episodes D = {τi | i ∈NN }, collected following a behavior policy πb .

Let M̂ be the maximum likelihood estimate of the underlying MDP built according
to the past experiences D (Section 2.4.1). Let e : S×A→R be an arbitrary error function,
such that e(s, a) represents the uncertainty over the parameters of the estimated transi-
tion function P̂ (· | s, a). The uncertainty set Σ(M̂ ,e) is the set of MDPs with transition
function P ′, such that the L1 distance between P ′(· | s, a) and P̂ (· | s, a) is smaller than
e(s, a) for every state-action pair, that is

∥∥P̂ (· | s, a)−P ′(· | s, a)
∥∥

1 ≤ e(s, a) ∀(s, a) ∈ S×A.

Intuitively, we must define the error function e wide enough such that Σ(M̂ ,e) includes
the true MDP with high probability 1−δ.

Laroche et al. (2019) proposed the SPIBB criterion, which is defined only over the
maximum likelihood estimate of the MDP M̂ and is easier to solve. According to this
criterion, an RL algorithm is considered safe if, given a confidence level δ and a level of
precision ζ, it has a high probability 1−δ of returning a policy that is ζ-approximate as
good as the behavior policy πb on all MDPs in Σ(M̂ ,e):

max
π∈Π

V (π,M̂)

s. t. V (π,M ′) ≥V (πb ,M ′)−ζ ∀M ′ ∈Σ(M̂ ,e).
(3.1)

Note that an algorithm that always returns the behavior policy is considered safe accord-
ing to this criterion. This line of work is motivated by situations where it is risky to apply
a new policy, such as when the policy updates are infrequent, and any change in the
behavior policy would represent a firm commitment.

3.2. SAFE POLICY IMPROVEMENT

3

35

Algorithm 3Πb-SPIBB.

Input: Previous experiences D

Input: Parameters ϵ,δ
Input: Behavior policy πb

Output: Safe Policy
1: Estimate P̂ ▷ Equation 2.5
2: Compute Bm =Km ▷ Equation 2.6
3: Compute Πb ▷ Equation 3.2
4: return argmaxπ∈Πb

V (π,M̂)

3.2.3. SPI WITH BASELINE BOOTSTRAPPING ALGORITHMS
The SPIBB framework is a model-based approach that guarantees safety by bootstrap-
ping unknown parts of the approximated model with the behavior policy πb (Laroche
et al., 2019). Formally, the set of bootstrapped state-action pairs Bm is the complement
of Km (Equation 2.6). This way, the SPIBB algorithms guarantee to perform at least as
well as the behavior policy and does not rely on a safety test, in contrast to other SPI
algorithms.

The SPIBB algorithm has two variants that bootstrap the behavior policy in differ-
ent ways. The value-based algorithm uses the estimated performance of the elements
of Bm during the planning phase and if a state-action pair from Bm is used during exe-
cution, control is returned to the behavior policy. The policy-based Πb-SPIBB algorithm
attributes the same probability to bootstrapped pairs as the behavior policy, which re-
stricts the policy space to

Πb = {π ∈Π |π(a | s) =πb(a | s) : ∀(s, a) ∈Bm } . (3.2)

Laroche et al. (2019) proved that if

m = 2

ϵ2 log
|S||A|2|S|

δ
, (3.3)

then the Πb-SPIBB algorithm is safe, where ϵ is a bound on the L1 distance between
the estimated transition function and the true transition function, that depends on the
precision parameter ζ. We now recall the safe policy improvement guaranteed by the
algorithm Πb-SPIBB from Laroche et al. (2019).

Theorem 1 (Safe policy improvement with baseline bootstrapping by (Laroche et al.,
2019)). Let π⊙ be an optimal policy constrained to Πb in the MLE-MDP M̂ . Then, π⊙

is a ζ-approximate safe policy improvement over the baseline πb with high probability
1−δ, where:

ζ=
4ϵVmax

1−γ −V (π⊙,M̂)+V (πb ,M̂).

Algorithm 3 gives a brief description of the Πb-SPIBB approach. The Π≤b-SPIBB al-
gorithm is a variation of theΠb-SPIBB algorithm where the constrained space of policies
is defined as follows:

Π≤b = {π ∈Π |π(a | s) ≤πb(a | s) : ∀(s, a) ∈Bm } . (3.4)

3

36 3. SAFE POLICY IMPROVEMENT IN FACTORED ENVIRONMENTS

In this case, it is possible to reduce the probability attributed to bootstrapped actions if
other actions that have already been sampled enough times have a better performance.

In their experimental analysis, Laroche et al. (2019) used a stochastic baseline policy
with softmax exploration over the optimal value function. As expected, the Πb-SPIBB
algorithm displayed a safe behavior. Although the Π≤b-SPIBB algorithm has not been
proven to be safe (in contrast to the Πb-SPIBB algorithm), the experimental analysis
showed that it could also have a safe behavior.

Since theΠb-SPIBB andΠ≤b-SPIBB algorithms can change the policy in only a subset
of the state-action pairs, they were demonstrated to be less conservative than other SPI
algorithms. Nevertheless, when a set of factors describes the problem, the state space
grows exponentially in the number of factors, which implies exponential growth in the
amount of data m (Equation 3.3) required to change a policy. The following section
shows that, by taking into account the independence between state variables, it is pos-
sible to exploit the factored representation of the problem using a minimum number of
samples that is only polynomial in the number of parameters of the FMDP.

3.3. FACTORED SPI WITH KNOWN STRUCTURE

This section shows how to adapt the SPIBB methodology to environments with fac-
tored dynamics, assuming that the dependence between the factors is known a priori,
although the distribution of each factor is unknown. First, we describe how the first two
steps of the policy-based SPIBB algorithm can be adapted to this setting. Next, we prove
that this algorithm is safe.

3.3.1. FACTORED POLICY-BASED SPIBB

Algorithm 4 presents the Factored Πb-SPIBB algorithm, an adaptation of Πb-SPIBB al-
gorithm for factored environments. Note that this algorithm takes an extra input: the
dependency function Pa used to determine which transition components must be esti-
mated (Q).

First, the algorithm estimates each transition component according to D using the
same counters as the factored R-max algorithm (Guestrin et al., 2002). The set of state-
action pairs to be bootstrapped Bm⃗ is the complement of the set of known state-action
pairs Km⃗ (Equation 2.8). In the next section, we show how each value in m⃗ must be
defined to ensure the safety of this algorithm. Given Bm⃗ and the behavior policy πb ,
the constrained policy space Πb is computed using Equation 3.2. Finally, the algorithm
searches for an optimal policy in Πb , however, in this case the transition function P̂ (· |
s, a) is estimated according to the estimate of each transition component (Equation 2.9).

Replacing Equation 3.2 by Equation 3.4 in Algorithm 4, we obtain the Factored Π≤b-
SPIBB algorithm, the factored version of the Π≤b-SPIBB algorithm. As we mentioned
before, Laroche et al. (2019) also proposed a value-based SPIBB algorithm. However,
developing an effective factored version of this method would require a factored repre-
sentation of the value function, which is typically not compactly factorized.

3.3. FACTORED SPI WITH KNOWN STRUCTURE

3

37

Algorithm 4 Factored Πb-SPIBB.

Input: Previous experiences D

Input: Parameters ϵ,δ
Input: Behavior policy πb

Input: Dependency function Pa
Output: Safe Policy

1: Estimate P̂ (· | x, a),∀(X , a,x) ∈Q ▷ Equation 2.7
2: Compute Bm⃗ =Km⃗ ▷ Equation 2.8
3: Compute Πb ▷ Equation 3.2
4: return argmaxπ∈Πb

V (π,M̂)

3.3.2. BENEFITS OF A FACTORED REPRESENTATION

There are two main benefits of exploiting factored representation in the safe RL setting
that we are considering: reduced sample complexity and being able to generalize better
from deterministic behavior policies. We detail both advantages below.

First, similar to the R-max algorithm (Brafman and Tennenholtz, 2002), these algo-
rithms enumerate the set of states to define Bm⃗ and compute a new policy. However, we
would like to point out that the primary goal of the new factored SPI algorithms is to im-
prove the precision of the estimated transition function, which allows these algorithms
to become less conservative. Example 3 illustrates this point.

Example 3. Consider the problem of controlling the temperature of three rooms, with
temperatures T1, T2 and T3. Because the first room only shares a wall with the second
room, the next value of T1 is conditionally independent of T3 given T1 and T2. To esti-
mate the future value of T1 given T1 = v1, T2 = v2 and T3 = v3, all past experiences where
T1 = v1 and T2 = v2 can be used, regardless of the temperature of T3. This way, using a
factored representation, a safe RL algorithm would need fewer samples to change how it
controls the temperature of the first room since it has a better estimate of the environment
dynamics.

Second, we would like to point out that by using a factored representation, the fac-
tored SPI algorithms may choose an action a in a state s even if η(s, a) = 0, a typical case
when the behavior policy is deterministic. In this case, a flat algorithm would never exe-
cute a in s. Therefore, the application of flat SPI algorithms is limited since they are not
able to increase the probability of a if πb(a | s) = 0. Example 4 clarify this property, and
we demonstrate this feature in an experiment with a deterministic behavior policy.

Example 4. Consider the dataset of past trajectories was collected following a determin-
istic behavior policy that always executes a’ ̸= a in the state s. In this case, η(s,a) = 0 and
a flat SPI algorithm would always return a policy π where π(a’ | s) = 1 and π(a | s) = 0.
The generalization capabilities of a factored representation can deal with this limitation:
the agent can estimate the transition components of each state variable X ∈X using past
experiences where action a was executed in other states s’ ∈ S \ {s } where s’[Paa(X)] =
s[Paa(X)]. Using the estimate of each component the agent can estimate the distribution
over the successor states P̂ (· | s,a) and, eventually, choose to execute a in s.

3

38 3. SAFE POLICY IMPROVEMENT IN FACTORED ENVIRONMENTS

Factored representations may also help to tackle the off-policy policy evaluation prob-
lem. High Confidence Off-Policy Evaluation (HCOPE) is a model-free method based on
importance sampling that estimates a candidate policy’s performance with a given con-
fidence level (Thomas et al., 2015a). From a model-based perspective, Hallak et al. (2015)
showed that using a factored representation to estimate the model, one can find accurate
estimates of the performance of a target policy. Thomas et al. (2015b) proposed a model-
free approach for the SPI problem. It divides the dataset in two partitions Dtrain and
Dtest. Using Dtrain, this algorithm computes a new policy and, to ensure safety, it checks
with the HCOPE test if the new policy is safe using Dtest, following a cross-validation
approach. If the computed policy is not considered safe, it indicates that no improved
policy was found, in which case the RL agent could keep executing the behavior policy.
Following a similar strategy, the method proposed by Hallak et al. (2015) could be used
to exploit the factored dynamics.

3.3.3. THEORETICAL ANALYSIS
In this section, we show that given the admissible error parameter ζ, the Factored Πb-
SPIBB algorithm satisfies the SPIBB safety criterion (Equation 3.1).

First, we show that the error of the transition function is bounded with high prob-
ability in all state-action pairs that are not bootstrapped by the Factored Πb-SPIBB al-
gorithm. With Corollary 1 by Strehl (2007) we can bound the L1 distance between the
estimated transition function computed by the product of a set of components and the
actual transition function, given that the error of each component is bounded.

Lemma 1 (Corollary 1 by Strehl (2007)). Let M be any FMDP. Suppose that for each tran-
sition component P (· | x, a) we have an estimate P̂ (· | x, a) such that∥∥P (· | x, a)− P̂ (· | x, a)

∥∥
1 ≤

ϵ

|X| .

Then, for all state action pairs ∥∥P (· | s, a)− P̂ (· | s, a)
∥∥

1 ≤ ϵ.

Next, we redefine Proposition 3 by Laroche et al. (2019) for the case where the tran-
sition function is estimated according to the estimate of each transition component
(Equation 2.9).

Proposition 1. Consider an environment modeled by a semi-MDP M (Sutton et al., 1999)
and the empirical semi-MDP M̂ estimated from a dataset D. If in every state s where
option oa

1 may be initiated, s ∈ Ia , we have that for all relevant components (X , a,x) ∈
Ds,a (Equation 2.3) √

2|X|2
η(x, a)

log
|Q|2|dom(X)|

δ
≤ ϵ, (3.5)

then holds that

Pr(
∥∥P (· | s, a)− P̂ (· | s, a)

∥∥
1 ≥ ϵ) ≤ δ, ∀(s, a) ∉Bm⃗ .

1Option oa is the counterpart of the original action a in the semi-MDP.

3.3. FACTORED SPI WITH KNOWN STRUCTURE

3

39

Proof. Using Weissman et al. (2003)’s Theorem 2.1, for each transition component (X , a,x) ∈
Q (Equation 2.2), we may write:

Pr
(∥∥P (· | x, a)− P̂ (· | x, a)

∥∥
1 ≥ ϵ̃

)
≤(2|dom(X)|−2)exp

(
−η(x, a)ϵ̃2

2

)
.

(3.6)

This equation bounds the error of each transition function component. To use Lemma 1,
we set ϵ̃= ϵ

|X| and rewrite Equation 3.6 as

Pr

(∥∥P (· | x, a)− P̂ (· | x, a)
∥∥

1 ≥
ϵ

|X|

)
≤(2|dom(X)|−2)exp

(
−η(x, a)ϵ2

2|X|2
)

≤2|dom(X)| exp

(
−η(x, a)

2|X|2
2|X|2
η(x, a)

log
|Q|2|dom(X)|

δ

)

=2|dom(X)| exp

(
− log

|Q|2|dom(X)|

δ

)

=2|dom(X)| exp

(
log

δ

|Q|2|dom(X)|

)
=2|dom(X)| δ

|Q|2|dom(X)|

= δ

|Q| .

(3.7)

Given a bound on the probability of each component being inaccurate, we can now
bound the probability that there exists a state-action pair whose transition distribution
is inaccurate. In the following derivation (a) comes from Lemma 1, (b) is an application
of the union bound over all components in Q and (c) comes from (Equation 3.7).

Pr
(∥∥P (· | s, a)− P̂ (· | s, a)

∥∥
1 ≥ ϵ

)
(a)
= Pr

(⋃
(X ,a,x)∈Q

∥∥P (· | x, a)− P̂ (· | x, a)
∥∥

1 ≥
ϵ

|X|

)
(b)
≤

|Q|∑
i=1

Pr

(∥∥P (· | x, a)− P̂ (· | x, a)
∥∥

1 ≥
ϵ

|X|

)
(c)
≤

|Q|∑
i=1

δ

|Q|
=δ,

(3.8)

which concludes our proof.

Now, to ensure that the conditions for Proposition 1 hold, we can set the minimum

number of observations for each component to mi = 2|X|2
ϵ2 log |Q|2|dom(X)|

δ , which is derived

3

40 3. SAFE POLICY IMPROVEMENT IN FACTORED ENVIRONMENTS

from Equation 3.5 by isolating η(x, a). This guarantees that all components relevant for
non-bootstrapped state-action pairs were experienced enough times, such that the er-
ror of the transition function of these state-action pairs is smaller than ϵ. This way, we
can use Proposition 1 to replace Proposition 3 in the proof of Theorem 3 (Laroche et al.,
2019).

Theorem 2. (Safe Policy Improvement of the Factored Πb-SPIBB Algorithm). Let Πb be
the set of policies under the constraint of following πb in every bootstrapped state-action
pair (s, a) ∈ Bm⃗ . Then, given the dependency function Pa of the underlying FMDP, the
policy π⊙ computed by the Factored Πb-SPIBB algorithm, is at least a ζ-approximate safe
policy improvement over πb with high probability 1−δ, with

ζ= 4ϵVmax

(1−γ)
−V (π⊙,M̂)+V (πb ,M̂).

Proof. The proof is similar to that of Theorem 3 (Laroche et al., 2019).

These results show that it is possible to bound the probability that the Factored Πb-
SPIBB algorithm computes a policy worse than the behavior policy. The main difference
with the original Πb-SPIBB algorithm is the way we bound the error of the transition
function. Given a desired ϵ, the term |A||S| is replaced by |Q| and |S| is now reduced
to |dom(X)|. This comes at the lower cost of adding a term polynomial in the num-
ber of variables |X|2 (necessary to bound the error of each component distribution). In
domains where the features are highly independent of each other, these results can sig-
nificantly reduce the number of samples necessary to improve the behavior policy, as
demonstrated in the empirical analysis.

3.3.4. EMPIRICAL ANALYSIS
We evaluate the proposed factored approaches for the SPI problem focusing on their
sample efficiency and generalization capability. All algorithms use a flat representation
to estimate the transition function, as in theΠb-SPIBB algorithm, and flat Value Iteration
with a discount factor of 0.99 to compute the new policy. We assume that the reward
function is known in all algorithms.

We evaluate the Πb-SPIBB and Factored Πb-SPIBB algorithms and their respective
relaxations Π≤b-SPIBB and Factored Π≤b-SPIBB. We compare these results with two ba-
sic model-based RL algorithms that simply estimate the underlying model and compute
a greedy policy according to this estimate. The first, called Basic Flat RL, uses a flat rep-
resentation and the second, called Basic Factored RL, uses a factored representation.

EXPERIMENTAL SETUP

We use two domains with known independence between features:

i. the Taxi domain (Dietterich, 1998) that has 4 conditionally independent features,
500 states, 6 actions, and a horizon of 200 steps; and

ii. the SysAdmin domain with 8 machines in a bidirectional ring topology (Guestrin
et al., 2003) that has 256 states, 9 actions, and a 40 steps horizon.

3.3. FACTORED SPI WITH KNOWN STRUCTURE

3

41

Our analysis uses three metrics:

i. the performance of the policies computed;

ii. the size of the set of bootstrapped state-action pairs; and

iii. the distribution error of P̂ , defined as the average of the L1 distance between the
estimated transition function and the true transition function.

The first two experiments have a setup similar to the empirical evaluation of the
SPIBB methodology (Laroche et al., 2019). A baseline policy πb is computed using soft-
max exploration over the optimal value function of each state-action pair (temperature 2
for the Taxi domain and 3 for the SysAdmin domain). Next, a batch of past experiences D

is generated following the behavior policy πb . Note that D is composed of a set of trajec-
tories, therefore |D| denotes the number of trajectories in D. Then, each algorithm uses
the historical data D and the behavior policy πb to compute a new policy π′. Finally, the
policies computed are evaluated by averaging the returns of 1000 simulations.

The third experiment uses the same instance of the SysAdmin domain but with a de-
terministic behavior policy that always executes the action with the second-highest ex-
pected value. This way, there is space for improvement in every state. Note that because
the policy is deterministic, this experiment requires the agent to be able to generalize its
past experiences to new states.

We performed a parameter search in each domain to choose the minimum value for
m and mi that maintains the safety of the algorithm. For the Taxi domain we set m = 10
and mi = 20 for 0 < i < |X|. In the case of the SysAdmin problem we set m = 50 and
mi = 10 for 0 < i < |X|.

EXPERIMENTAL RESULTS

Figure 3.1 shows the results obtained. Each column presents a different experiment and
each row presents a different metric. The first row shows the average performance of the
policies computed over 1000 repetitions and the 1st percentile of these values, which lets
us assess the safety of each method. On the second and third rows we omit the results
of Basic Flat RL, Basic Factored RL, Π≤b-SPIBB, Factored Π≤b-SPIBB that are equal to
Πb-SPIBB and Factored Πb-SPIBB respectively or do not apply. Note that solid (dotted)
lines are used for algorithms that use a flat (factored) representation, and dashed lines
are used for the baseline policy. We highlight that the experiments with different batch
sizes are independent of each other, that is, the trajectories collected where |D| = x are
not related to the trajectories collected where |D| < x.

EXPERIMENTS WITH A STOCHASTIC POLICY

In the Taxi experiment (Figure 3.1, first column), we notice that although the unsafe al-
gorithms (Basic Flat RL and Basic Factored RL) can improve their performance quickly,
they obtain policies worse than the behavior policy when the batch contains only a few
trajectories, precisely what safe reinforcement learning tries to avoid. All the other algo-
rithms are shown to be safe as expected.

The main result of this work is the difference in the number of samples necessary
to change the behavior policy of flat SPI algorithms and their factored counterparts. The

3

42 3. SAFE POLICY IMPROVEMENT IN FACTORED ENVIRONMENTS

0.04 0.02 0.00 0.02 0.04
0.050

0.025

0.000

0.025

0.050

Basic RL
Basic Factored RL

b-SPIBB
Factored b-SPIBB

b-SPIBB
Factored b-SPIBB

Baseline

100 101 102 103 104

| |

80

60

40

20

0
M

ea
n

Pe
rfo

rm
an

ce

100 101 102 103 104

| |

60

80

100

120

140

M
ea

n
Pe

rfo
rm

an
ce

100 101 102 103 104

| |

60

80

100

120

140

M
ea

n
Pe

rfo
rm

an
ce

100 101 102 103 104

| |

0

1000

2000

3000

| |

100 101 102 103 104

| |

0

500

1000

1500

2000

| |

100 101 102 103 104

| |

0

500

1000

1500

2000

| |

100 101 102 103 104

| |

0.00

0.25

0.50

0.75

1.00

Di
str

ib
ut

io
n

Er
ro

r

100 101 102 103 104

| |

0.00

0.25

0.50

0.75

1.00

Di
str

ib
ut

io
n

Er
ro

r

100 101 102 103 104

| |

0.00

0.25

0.50

0.75

1.00

Di
str

ib
ut

io
n

Er
ro

r
Figure 3.1: In every plot the x-axis shows the number of trajectories in the batch. Each column shows the
results of a different experiment: Taxi with softmax policy (left), SysAdmin with softmax policy (middle) and
SysAdmin with deterministic policy (right). The rows present: i) the average performance of the computed
policy (top), ii) the number of bootstrapped state-action pairs (middle), and iii) the average distribution error
of the estimated transition function (bottom).

FactoredΠb-SPIBB algorithm manages to compute policies better than the behavior pol-
icy given batches with only 20 trajectories, in contrast to the Πb-SPIBB algorithm, that
only shows improvement when |D| ≥ 50. As already demonstrated, the Π≤b-SPIBB algo-
rithm can be less conservative (Laroche et al., 2019), and is able to find better improve-
ments when |D| = 50, while its factored version (Factored Π≤b-SPIBB) is even less con-
servative finding improvements when |D| = 5 and already getting close to the optimal
policy when |D| = 50. To provide a more precise measure of these differences, Table 3.1
shows the results when |D| = 50.

When comparing the number of bootstrapped state-action pairs by each algorithm
(Figure 3.1, second row) and the performance of the policy computed, we see a strong
correlation between them. Namely, a smaller number of bootstrapped state-action pairs
results in higher performance. The quicker reduction of the distribution error (Figure 3.1,
third row) shows why the Factored SPIBB algorithm can bootstrap from fewer state-
action pairs; this is a clear result of the generalization capacity of factored representa-
tions.

In the SysAdmin with softmax policy experiment (Figure 3.1, second column) the
results are similar, although the differences between (Factored)Πb-SPIBB and (Factored)
Π≤b-SPIBB algorithms are much larger than in the first experiment. We also notice that
for the factored algorithms |B| drops quickly between |D| = 20 and |D| = 200 when these

3.4. STRUCTURE LEARNING FOR SAFE POLICY IMPROVEMENT

3

43

Algorithm Mean 1st percentile

Baseline Value -25.91 -27.09
Basic RL -16.43 -27.24
Basic Factored RL 5.56 -4.71
Πb-SPIBB -24.36 -26.54
Factored Πb-SPIBB -5.94 -9.72
Π≤b-SPIBB -16.60 -19.70
Factored Π≤b-SPIBB -1.08 -4.32

Table 3.1: Performance of policies computed when |D| = 50.

algorithms stop bootstrapping and achieve the same performance as Basic Factored RL.

EXPERIMENTS WITH A DETERMINISTIC POLICY.
Finally, in the SysAdmin with deterministic behavior policy experiment (Figure 3.1, third
column), the factored algorithms are the only ones that manage to improve the behavior
policy. As expected, none of the flat algorithms can find a policy better than the behav-
ior policy, given that the behavior policy is deterministic. We notice that the distribution
error of the flat representation only drops slightly while for the factored representation
it drops to an average of 0.5, which is enough to let the factored algorithms stop boot-
strapping some of the state-action pairs.

3.4. STRUCTURE LEARNING FOR SAFE POLICY IMPROVEMENT
In the previous section, we showed that the Πb-SPIBB framework can be extended to
factored environments. Algorithm 4 shows an overview of the Factored Πb-SPIBB algo-
rithm. Note that this algorithm takes as input the structure of the DBN, represented by
the set of parents of each variable-action pair. The main enhancement of this algorithm
is a reduction in the number of samples required to stop bootstrapping a state-action
pair.

The Factored Πb-SPIBB algorithm assumes that the structure of the FMDP is known
a priori, a strong assumption that frequently is not satisfied. In this section, we propose a
more general version of the Factored SPIBB framework for problems where the structure
of the problem is unknown.

In this section, we consider a setting where the maximum in-degree d of the un-
derlying FMDP is known. We use the KWIK algorithms designed to learn the structure
of the problem as described in Section 2.4.1. We start with an overview of how to cou-
ple structure learning algorithms with the SPIBB framework, followed by theoretical and
empirical analyses of the new framework.

3.4.1. THE ALGORITHM

Structure Learning Πb-SPIBB keeps track of the distribution of each transition com-
ponent using a separate subalgorithm K Xi ,a , for each state-variable and action pair
(Xi , a) ∈ X×A. The subalgorithms used by this framework can be borrowed from the

3

44 3. SAFE POLICY IMPROVEMENT IN FACTORED ENVIRONMENTS

Algorithm 5 Structure Learning Πb-SPIBB

Input: Previous experiences D

Input: Parameters ϵ,δ
Input: Behavior policy πb

Input: Subalgorithms K

Output: Safe Policy
1: for all (Xi , a) ∈X×A do
2: Initialize K Xi ,a with ϵ

|X| and δ
|X||A|

3: Present {(s, a′, s′) ∈D | a′ = a } to K Xi ,a

4: end for
5: B=;
6: for all (s, a) ∈ S×A do
7: if ∃Xi ∈X : K Xi ,a(s) =⊘ then
8: B=B∪ { (s, a) }
9: P̂ (s′ | s, a) = 0,∀s′ ∈ S

10: else
11: Pi =K Xi ,a(s),∀Xi ∈X
12: P̂ (s′ | s, a) =∏

Xi∈X Pi (s′[Xi]),∀s′ ∈ S ▷ Equation 2.1
13: end if
14: end for
15: Compute Πb according to B ▷ Equation 3.2
16: return argmaxπ∈Πb

V (π,M̂)

factored RL literature (Section 2.4.1). Algorithm 5 presents an overview of the new frame-
work. Different from the original SPIBB algorithm (Algorithm 3), this framework takes as
input a class of subalgorithms K that must be chosen according to the prior knowledge
available. Note that if the given subalgorithm knows the underlying structure, this algo-
rithm would be equal to the Factored Πb-SPIBB algorithm.

First, Algorithm 5 instantiates one subalgorithm for each variable-action pair and
presents the relevant transitions from the batch of previous experiences D to it (lines 1-
4). Next, it estimates the transition function and, at the same time, it builds the set of
bootstrapped state-action pairs (lines 5-14). Line 8, shows how the set of bootstrapped
state-action pairs B is constructed. For a given state-action pair (s, a), if one of the subal-
gorithms related to a returns⊥ given s (line 7), then the pair (s, a) is added toB. Note that
for these pairs, at least one of the subalgorithms does not return a distribution, therefore
we assume that these state-action pairs are absorbing. Finally, the safe policy is com-
puted in the same way as by the Factored Πb-SPIBB algorithm.

As discussed in Section 2.4, factored RL has been studied in settings where the de-
pendence structure is unknown. These approaches include methods that search for the
underlying structure with and without guarantees of sample complexity (Chakraborty
and Stone, 2011; Degris et al., 2006; Diuk et al., 2009; Strehl et al., 2007). Although some
of these methods do not provide correctness guarantees, we believe they could also be
coupled with the factored SPIBB framework to develop more practical algorithms. An-
other line of research considers a case where a prior distribution over the underlying

3.4. STRUCTURE LEARNING FOR SAFE POLICY IMPROVEMENT

3

45

structures is available. Ross and Pineau (2008) propose a Bayesian RL approach (Duff,
2002; Vlassis et al., 2012) that exploits the DBN structure by adding the belief over the
underlying structures to the state space instead of the parameters of the transition func-
tion.

3.4.2. THEORETICAL ANALYSIS
For the theoretical analysis of the proposed algorithm, we first show that the transition
function of non-bootstrapped state-action pairs is precise with high probability.

Proposition 2. When the Structure LearningΠb-SPIBB algorithm is equipped with a sub-
algorithm K that is KWIK-admissible, all non-bootstrapped state-action pairs have a
transition error smaller than ϵ with high probability 1−δ:

Pr(∀(s, a) ∉B :
∥∥P (· | s, a)− P̂ (· | s, a)

∥∥
1 ≤ ϵ) ≥ 1−δ.

Proof. According to Strehl (2007, Corollary 1), if all |X| relevant subalgorithms return a
distribution with error smaller than ϵ

|X| then the error of the estimated transition func-
tion is smaller than ϵ. Using a union bound, we conclude that the probability that there
is a factor with error larger than ϵ

|X| is smaller than
∑|X||A|

1
δ

|X||A| = δ. Given that the sub-
algorithm used is KWIK-admissible, the above assumptions hold, which concludes our
proof2.

We can use Proposition 2 to show that the proposed algorithm is safe.

Theorem 3. (Safe Policy Improvement of the Structure Learning Πb-SPIBB Algorithm).
Let Πb be the set of policies under the constraint of following πb in every bootstrapped
state-action pair (s, a) ∈ B. Then, given the maximum in-degree d of the underlying
FMDP, the policy π⊙ computed by the Structure Learning Πb-SPIBB algorithm, is at least
a ζ-approximate safe policy improvement over πb with high probability 1−δ, with

ζ= 4ϵVmax

(1−γ)
−V (π⊙,M̂)+V (πb ,M̂).

Proof. We use Proposition 2 to replace Proposition 1 in the proof of Theorem 2 by Laroche
et al. (2019).

In conclusion, the algorithm Structure Learning Πb-SPIBB is safe when equipped
with a KWIK-admissible algorithm.

3.4.3. EMPIRICAL ANALYSIS
We evaluate the Structure Learning Πb-SPIBB framework combined with the two struc-
ture learning algorithms presented before (SL and k-meteorologists, see Section 2.4.1 for
details) in three domains. The two baselines for comparison are the Factored Πb-SPIBB
algorithm (Simão and Spaan, 2019a, Section 3.3.1), that knows the structure of the prob-
lem, and the (flat)Πb-SPIBB algorithm (Laroche et al., 2019, Section 3.2.3), that does not

2This proof follows the same principle used by (Li et al., 2011, p. 413, Problem 9) to show that the output com-
bination algorithm is KWIK-admissible. However, to prove that FMDPs with unknown structure are KWIK-
learnable, Li et al. (2011) use a different algorithm that includes the action as one of the input variables.

3

46 3. SAFE POLICY IMPROVEMENT IN FACTORED ENVIRONMENTS

Taxi SysAdmin Stock-Trading

Πb-SPIBB m 10.00 100.00 10.00

Factored Πb-SPIBB m 20.00 10.00 20.00

Πb-SPIBB SL m 20.00 10.00 20.00
ϵ1 0.01 0.20 0.30

Πb-SPIBB m 10.00 10.00 20.00
k-meteorologists ϵ1 0.01 0.00 0.01

c 2000.00 2000.00 300.00

Table 3.2: Parameters used by each algorithm

consider this structure. We also consider an algorithm without safety guarantees, re-
ferred to as Factored Basic RL. This algorithm has access to the problem’s structure and
computes a greedy policy according to an estimate of the factored transition function of
the problem.

All algorithms use a flat estimate of the transition function and a flat Value Iteration
algorithm with a discount factor of 0.99. We assume that the reward function is known
in all algorithms. The problems used are:

i. the Taxi domain with a horizon of 200 steps (Dietterich, 1998),

ii. the SysAdmin domain with 9 machines in a bidirectional ring topology and a hori-
zon of 40 steps (Guestrin et al., 2003), and

iii. the Stock-Trading domain with 3 sectors and 2 stocks per sector with a horizon of
40 steps (Strehl et al., 2007).

We follow a setup similar to the experiments by Laroche et al. (2019) and the experiments
from Section 3.3.4, where the behavior policy πb is defined as a softmax over the optimal
value function. The softmax temperature is set to 2 for the Taxi and Stock-Trading do-
mains and 3 for the SysAdmin domain.

In summary, each experiment is executed in three steps, varying the number of episodes
in the batch D of previous experiences:

i. create D by executing the behavior policy πb ,

ii. present D and πb (in the case of the safe algorithms) to each algorithm and com-
pute a new policy π′, and

iii. estimate the performance of each new policy by averaging the discounted returns
of 1000 trials.

Table 3.2 reports the parameters used by each algorithm. These values were chosen
accordingly to reduce the number of samples required to improve the policy while keep-
ing a safe behavior. Figures 3.2 and 3.3 present the results. The x-axis of each plot shows
the number of episodes in the batch collected with the behavior policy.

3.4. STRUCTURE LEARNING FOR SAFE POLICY IMPROVEMENT

3

47

Figure 3.2: Structure learning error of the SL and k-meteorologists algorithms

SEARCHING FOR THE BEST CANDIDATE STRUCTURE

Figure 3.2 shows how the estimated structure improves as the structure learning algo-
rithms receive more data. For the SL algorithm it shows the number of parents missing
in the selected candidate: ∑

Xi ,a∈X×A

∣∣Paa(Xi) \∆Xi ,a
∣∣,

where ∆Xi ,a is the candidate chosen by subalgorithm K Xi ,a . For the k-meteorologists
algorithm it shows the average number of missing parents between all remaining candi-
dates: ∑

Xi ,a∈X×A

∑
∆∈ψXi ,a

|Paa(Xi) \∆|∣∣ψXi ,a
∣∣ ,

where ψXi ,a ⊆X is the set of remaining candidates of K Xi ,a .
In the Taxi domain (Figure 3.2 top), the overall number of missing parents is small,

which is expected since this domain has only four variables. Nevertheless, we note that
the k-meteorologists algorithm needs significantly more samples to discard the candi-
dates that do not contain the true parents. That occurs because the number of mis-
matches (c) must be large to avoid erroneously discarding a candidate.

The structure learning algorithms exhibit a similar behavior in the SysAdmin domain
(Figure 3.2 middle) and in the Stock-Trading domain (Figure 3.2 bottom). Both algo-
rithms select candidates missing many parents in small datasets. The k-meteorologists
algorithm, however, has a sudden drop in the number of missing parents. This is ex-
plained by the fact that all the subalgorithms crossed the minimum number of mis-
matches when the dataset is larger than a certain threshold.

We also note that the SL algorithm does not display a monotonic improvement in
these domains. This is because to compute the distribution divergence of two sets of

3

48 3. SAFE POLICY IMPROVEMENT IN FACTORED ENVIRONMENTS

Figure 3.3: Average performance of the computed policy over 50 repetitions, along with the 1st percentile and
99th percentile (shaded area)

candidates (Equation 2.11), we only consider configurations that have been observed
at least once. Without this measure, the SL algorithm is not able to learn the structure
of the Taxi domain, where some configurations are never observed. Therefore, in the
SysAdmin and Stock-Trading domains, when |D| is small, the SL algorithm ignores some
of the configurations and can improve the estimated structure. However, when D con-
tains more configurations, it becomes more conservative again, returning ⊘ until it gets
enough data for all configurations.

POLICY IMPROVEMENT

Next, we evaluate the performance of the Factored Πb-SPIBB with structure learning al-
gorithms (Figure 3.3). We present the average performance of 50 repetitions, plus the
1st percentile and 99th percentile (shaded area) to measure the risk of the algorithms.

First, we observe that in the Taxi domain (Figure 3.3 left), the structure learning ap-
proaches are slightly more conservative than the flat Πb-SPIBB algorithm. This is not
surprising since, as pointed out by Strehl et al. (2007), a DBN is not the ideal structure to
capture the independence between the variables of this domain. Comparing the meth-
ods using structure learning algorithms, we see that the FactoredΠb-SPIBB SL algorithm
requires fewer samples to exceed the performance of the behavior policy than the Fac-
tored Πb-SPIBB k-meteorologists algorithm. This is because, as mentioned before, the
k-meteorologists algorithm requires a large number of mismatches to discard a candi-
date, while the SL algorithm can choose the best candidate with fewer samples.

The advantages of using a structure learning algorithm are more prominent in well-
factorized environments, where the maximum in-degree d is much smaller than the
number of state variables. The experiments with the SysAdmin and Stock-Trading do-
mains illustrate this fact (Figure 3.3 middle and right). We note that in the Stock-Trading
domain, the Factored Πb-SPIBB algorithm needs around 50 trajectories to find the op-
timal policy while the Factored Πb-SPIBB k-meteorologists algorithm needs 200 trajec-
tories and the flat Πb-SPIBB algorithm needs 10000 trajectories. Their relative perfor-
mance is similar in the SysAdmin domain. In summary, using the k-meteorologists al-
gorithm, Structure Learning Πb-SPIBB demonstrates a behavior closer to the Factored
Πb-SPIBB algorithm and manages to find an improved policy with an order of magni-
tude fewer samples than the flat Πb-SPIBB algorithm.

3.5. A REALISTIC CASE STUDY

3

49

3.5. A REALISTIC CASE STUDY

The algorithms proposed in this chapter, along with their flat counterparts, have been
tested in a steel melting plant simulation (Kosiorek, 2020). This application is appealing
since the process of melting steel consumes large amounts of energy, and even small
optimizations can significantly reduce the total energy consumption (Castro et al., 2013).

The steel melting process is executed over a set of batches of metal scrap, called heats.
Each heat is stored in a ladle that goes through a set of treatment stations, including
melting, decarburization, refining, and casting (Castro et al., 2013). Heats with similar
characteristics are grouped in a campaign, which must be cast together in a sequence.
This imposes time constraints on the problem, which are difficult to handle due to the
stochastic duration of each process. In particular, finding the right time to launch each
ladle can make the process more efficient, reducing the waiting time of the machines
and of the ladles spread over the plant.

In the Steel Plant Model (SPM; Schrama et al., 2015), the launching of each ladle is
decided heuristically based on the time passed since the last launch, which might be
sub-optimal. Kosiorek (2020) proposed to model this problem as an MDP to compute a
ladle launching policy considering the current position of the ladles in the plant. Using
the built-in heuristic as the behavior policy for data collection allowed the evaluation
of SPI algorithms, such as the proposed in this chapter. In this setting, the SPIBB and
factored SPIBB algorithms steadily improved over the behavior policy, finding policies
with better production yield and less idle time.

This case study revealed an issue that is not taken into account by the SPI algorithms;
the behavior policy might be only partially defined. Meaning it assigns actions only to
a subset of the state space, namely, states reachable by following the behavior policy.
In practice, the behavior policy may be partially defined when hand-designed since the
designer would only put effort into relevant states. This can be an issue for SPI since
minor deviations from the behavior policy could lead the agent to states uncovered by
the behavior policy, where the expected behavior is simply unknown.

Kosiorek (2020) also handled discrepancies between the real world and the usual RL
setting. The SPI task imposes extra constraints on the MDP modeling, which must be
compatible with the behavior policy. For instance, the heuristic used on the SPM de-
pends on the time since the last launch, which, when included in the state space, can
cause a considerable growth in the state space. While the policy computed by the RL
algorithm may not need this information, the SPIBB requires the compatibility between
the domain of the behavior policy and the agent’s policy.

These findings indicate that practitioners should model their problems as an MDP
as soon as possible. This approach would allow the launching heuristic from SPM to be
defined on the state space of the MDP, allowing an easier deployment of SPI algorithms
later on. Finally, the data collected by the behavior policy might have limited coverage
of the problem. Since offline RL algorithms are most effective when the data collected is
more diverse, practitioners intending to use such algorithms should consider behavior
policies with more extensive support to collect diverse trajectories.

3

50 3. SAFE POLICY IMPROVEMENT IN FACTORED ENVIRONMENTS

3.6. CONCLUSIONS AND FUTURE WORK
We proposed the Factored Πb-SPIBB algorithm, an adaptation of the Πb-SPIBB algo-
rithm (Laroche et al., 2019) to environments with factored dynamics and proved that
this algorithm is safe. The Factored Πb-SPIBB algorithm inherits from factored RL the
capability to exploit the independence between features, allowing it to reduce the num-
ber of samples necessary to stop bootstrapping the behavior policy. This new method
also can improve deterministic policies by generalizing past experiences, a novel feature
for SPI algorithms.

Furthermore, we presented an SPI framework for factored environments with un-
known structure. Relaxing the assumption that the underlying structure is known a
priori makes this method applicable in a broader range of problems. When equipped
with an efficient structure learning method, this framework can still exploit the factored
structure of the environment and typically requires fewer samples than a flat algorithm
to improve the behavior policy.

For simplicity, we assumed that the reward function is known. However, this func-
tion can also be succinctly represented in cases with an additive property, as described
in Section 2.2. Therefore, it would also be possible to adapt the FactoredΠb-SPIBB algo-
rithm to environments with an unknown reward function.

Studying how to exploit other types of structure such as decision trees and linear
dynamics in this setting is a promising line of future work. Finally, we believe it is also
possible to extend other model-based SPI algorithms to factored environments, such as
the robust approach by Petrik et al. (2016).

4
SAFE POLICY IMPROVEMENT WITH

AN ESTIMATED BEHAVIOR POLICY

Previous work has shown the unreliability of existing algorithms in the batch Reinforce-
ment Learning setting, and proposed the theoretically-grounded Safe Policy Improvement
with Baseline Bootstrapping (SPIBB) fix: reproduce the baseline policy in the uncertain
state-action pairs, in order to control the variance on the trained policy performance.
However, in many real world applications such as dialogue systems, pharmaceutical tests
or crop management, data is collected under human supervision and the baseline remains
unknown. In this chapter, we apply SPIBB algorithms with a baseline estimate built from
the data. We formally show safe policy improvement guarantees over the true baseline
even without direct access to it. Our empirical experiments on finite and continuous states
tasks support the theoretical findings. It shows little loss of performance in comparison
with SPIBB when the baseline policy is given, and more importantly, drastically and sig-
nificantly outperforms competing algorithms both in safe policy improvement, and in av-
erage performance.

This chapter is based on a paper presented at AAMAS-20 (Simão et al., 2020).

51

4

52 4. SAFE POLICY IMPROVEMENT WITH AN ESTIMATED BEHAVIOR POLICY

In Chapter 3, we saw recent advances on offline RL, where algorithms such as SPIBB
and Soft-SPIBB have improvement guarantees. Moreover, we saw that exploiting the
structure of FMDPs improves the sample complexity of SPI algorithms.

Despite such appealing results, there is a caveat: these algorithms require the behav-
ior policy as input. However, the behavior policy is not always available. Consider, for
instance, applications involving human interactions, such as dialogue systems (Serban
et al., 2016) and the medical sector. In these situations, it is common to have access to
the observations and actions that were taken in a trajectory but not the policy that was
followed. To overcome this issue, we investigate the use of SPIBB and Soft-SPIBB algo-
rithms in the setting where the behavior policy is unknown.

In this chapter, we address Research Question 4, which asks whether access to the be-
havior policy is required or not to obtain improvement guarantees, a very natural ques-
tion arising from the existing SPIBB analysis. Therefore, the contributions are threefold:

i. We formally prove safety bounds for SPIBB and Soft-SPIBB algorithms with esti-
mated baseline policies in finite MDPs (Section 4.2).

ii. We consolidate the theoretical results with empirical results in finite randomly
generated MDPs, unknown baselines, and datasets (Section 4.4.1).

iii. We apply the method on a continuous state task by investigating two types of be-
havior cloning and show that it outperforms competing algorithms by a large mar-
gin, in particular on small datasets (Section 4.4.2).

The code to reproduce all experiments is available online1. In summary, our results bring
the SPIBB framework a step closer to many real world tasks where the behavior policy is
unknown.

4.1. APPROXIMATE SAFE POLICY IMPROVEMENT
In this section, we review the safe policy improvement problem for the reader’s conve-
nience and describe the Soft-SPIBB. For a more comprehensive introduction to the safe
policy improvement problem, we refer to Section 3.2.

In the SPI setting, the agent receives as input the dataset D and must compute a
new policy π that approximately improves with high probability the behavior policy πb .
Formally, the safety criterion can be defined as:

Pr
(
V (π,M∗) ≥V (πb ,M∗)−ζ)≥ 1−δ,

where ζ is a hyper-parameter indicating the improvement approximation and 1−δ is the
high confidence hyper-parameter. Petrik et al. (2016) demonstrate that the optimization
of this objective is NP-hard. To make the problem tractable, Laroche et al. (2019) end up
considering an approximate solution by maximizing the policy in the MLE MDP while
constraining the policy to be approximately improving in the robust MDPs set Σ. More
formally, they seek:

arg max
π

V (π,M̂), s.t. ∀M ∈Σ,V (π,M) ≥V (πb ,M)−ζ.

1https://github.com/RomainLaroche/SPIBB and https://github.com/rems75/SPIBB-DQN

https://github.com/RomainLaroche/SPIBB
https://github.com/rems75/SPIBB-DQN

4.2. BASELINE ESTIMATES

4

53

Given a hyper-parameter m, their algorithm Πb-SPIBB constrains the policy search
to the setΠb of policies that reproduce the baseline probabilities in the state-action pairs
that are present less than m times in the dataset D (Equation 3.2). We restate the defini-
tion here for convenience:

Πb = {π ∈Π |π(a | s) =πb(a | s) : ∀(s, a) ∈Bm } .

Our work also considers the algorithm Soft-SPIBB (Nadjahi et al., 2019), that con-
strains the policy search such that the cumulative state-local error never exceeds a fixed
hyper-parameter σ. More formally, the policy constraint is expressed as follows:

Π∼ =
{
π ∈Π

∣∣∣∣∣ ∑
a∈A

eδ(s, a)|π(a | s)−πb(a | s)| ≤σ : ∀s ∈ S
}

. (4.1)

Under some assumptions, Nadjahi et al. (2019) demonstrate a looser safe policy im-
provement bound. Nevertheless, the policy search is less constrained, and their empiri-
cal evaluation reveals that Soft-SPIBB safely finds better policies than SPIBB.

Both algorithms presented in this section assume the behavior policy πb is known
and can be used during the computation of a new policy. In the next section, we get to
the main contribution of this chapter, where we investigate how these algorithms can be
applied when πb is not given.

4.2. BASELINE ESTIMATES
In this section, we consider that the true baseline is unknown and implement a baseline
estimate in order for the SPIBB and Soft-SPIBB algorithms to still be applicable. Before
we start our analysis, we present an auxiliary lemma.

Let dπ
M

(a | s) be the discounted sum of visits of state-action pair (s, a) ∈ S×A while
following policyπ in MDP M dD the state-action discounted distribution in the dataset D:

dD(a | s) =
∑

〈st ,at ,rt ,s′t 〉∈D

γt1(st = s)1(at = a),

where 1 is the indicator function.

Lemma 2. Considering that the trajectories in D are i.i.d. sampled, the L1 deviation of the
empirical discounted sum of visits of state-action pairs is bounded. We have the following
concentration bound:

Pr
(∥∥∥dπb

M∗ −dD

∥∥∥
1

(1−γ) ≥ ε
)
≤

(
2|S||A|−2

)
exp

(
−

Nε2

2

)
, (4.2)

where N is the number of trajectories in D.

Proof. Let T = (S×A)∗ denote the set of trajectories and T = {T1, . . . ,TN } be a set of N
T -valued random variables. For a given set of state-action pairs E ⊂ S×A, we define the
function fE on T as:

fE (T) = fE (T1, . . . ,TN) := (1−γ)
N∑

i=1

∑
t≥0

γt1(T t
i ∈ E),

4

54 4. SAFE POLICY IMPROVEMENT WITH AN ESTIMATED BEHAVIOR POLICY

where T t
i is the state-action pair on trajectory i at time t . In particular, we have that

fE (D) = N (1−γ)dD(E) and (4.3)

E
[

fE (T)
]= N (1−γ)dπb

M∗ (E), (4.4)

where dD(E) and dπb
M∗ (E) denote the mass of set E under dD and dπb

M∗ respectively.
For two sets T and T ′ differing only on one trajectory, say the k-th, we have:∣∣ fE (T)− fE (T ′)

∣∣= ∣∣∣∣(1−γ)
∑
t≥0

γt
(
1(T t

k ∈ E)−1(T ′t
k ∈ E)

)∣∣∣∣≤ 1.

This allows us to apply the independent bounded difference inequality by McDiarmid
(1998, Theorem 3.1), which gives us:

Pr
(

fE (T)−E[fE (T)] ≥ ε̄)≤ exp

(
−2

ε̄2

N

)
. (4.5)

We know that ∥∥∥dπb
M∗ −dD

∥∥∥
1

(1−γ) = max
E⊂S×A

2(1−γ)(dD(E)−dπb
M∗ (E)).

This guarantees from a coarse union bound and Equations 4.3 to 4.5 that:

Pr
(∥∥∥dπb

M∗ −dD

∥∥∥
1

(1−γ) ≥ ε
)
≤

∑
E⊂S×A

Pr
(
(1−γ)(dD(E)−dπb

M∗ (E)) ≥ ε

2

)
=

∑
E⊂S×A

Pr

(
(1−γ)

(
fE (D)

N (1−γ)
− E[fE (D)]

N (1−γ)

)
≥ ε

2

)
=

∑
E⊂S×A

Pr

(
fE (D)−E[fE (D)] ≥ Nε

2

)

≤
∑

E⊂S×A
exp

(
−2

(Nε
2)

2

N

)

≤
(
2|S||A|−2

)
exp

(
−Nε2

2

)
,

where in the sum over subsets, we ignored the empty and full sets for which the proba-
bility is trivially 0.

4.3. ALGORITHM AND ANALYSIS
We construct the MLE baseline π̂b as follows:

π̂b(a | s) =
{ηD (s,a)

ηD (s) if ηD(s) > 0,
1
|A| otherwise,

∀s, a ∈ S×A, (4.6)

where ηD(s) is the number of transitions starting from state s in dataset D. Using this
MLE policy, we may prove approximate safe policy improvement:

4.3. ALGORITHM AND ANALYSIS

4

55

Theorem 4 (Safe policy improvement with a baseline estimate). Given an algorithmα re-
lying on the baselineπb to train a ζ-approximate safe policy improvementπ⊙ overπb with
high probability 1−δ. Then, α with an MLE baseline π̂b allows to train a ζ̂-approximate
safe policy improvement π̂⊙ over πb with high probability 1− δ̂:

δ̂= δ+2δ′,

ζ̂= ζ+
2R⊤

1−γ

√
3|S||A|+4log 1

δ′

2N
,

where N is the number of trajectories in the dataset D and 1−δ′ controls the uncertainty
stemming from the baseline estimation.

Proof. We are ultimately interested in the performance improvement of π̂⊙ with respect
to the true baseline πb in the true environment M∗. To do so, we decompose the differ-
ence into two parts:

V (π̂⊙,M∗)−V (πb ,M∗) =V (π̂⊙,M∗)−V (π̂b ,M∗)︸ ︷︷ ︸
α-SPI guarantee

+ V (π̂b ,M∗)−V (πb ,M∗)︸ ︷︷ ︸
baseline estimate approximation

.

Regarding the first term, note that, while π̂b is not the true baseline, it is the MLE
baseline, meaning in particular that it was more likely to generate the dataset D than the
true one. Hence, we may consider it as a potential behavior policy and apply the safe
policy improvement guarantee provided by algorithm α to bound the difference.

Regarding the second term, we need to use the distributional formulation of the per-
formance of any policy π:

V (π,M) =
∑
s∈S

∑
a∈A

dπ
M (a | s)E[R(s, a)].

Then, we may rewrite the second term in Equation 4.7 and upper bound it using Hölder’s
inequality as follows: ∑

s∈S

∑
a∈A

(
d π̂b

M∗ (s, a)−dπb
M∗ (s, a)

)
E[R∗(s, a)]

≤
∥∥∥d π̂b

M∗ −dπb
M∗

∥∥∥
1

R⊤.
(4.7)

Next, we decompose the state-action discounted visits divergence as follows:∥∥∥d π̂b
M∗ −dπb

M∗

∥∥∥
1
≤

∥∥∥dπb
M∗ −dD

∥∥∥
1︸ ︷︷ ︸

Lemma 2

+
∥∥∥d π̂b

M∗ −dD

∥∥∥
1

.︸ ︷︷ ︸
positive correlation

(4.8)

For the first term, we can use the concentration inequality from Lemma 22. With a little
calculus and by setting the right value to ε, we obtain with high probability 1−δ′:

∥∥∥dπb
M∗ −dD

∥∥∥
1
≤

1

1−γ

√
3|S||A|+4log 1

δ′

2N
.

2We need to rescale the state-action discounted visits with (1−γ) to make it sum to 1 since the original bound
applies to probability distributions.

4

56 4. SAFE POLICY IMPROVEMENT WITH AN ESTIMATED BEHAVIOR POLICY

Regarding the second term of Equation 4.8, we may observe that there is a correlation
between π̂b and dD through D, but it is a positive correlation, meaning that the diver-
gence between the distributions is smaller than the one with an independently drawn
dataset of the same size. As a consequence, we are also able to upper bound it by as-
suming independence and using the same development as for the first term. This finally
gives us from Equation 4.8 and with high probability 1−2δ′:

∥∥∥d π̂b
M∗ −dπb

M∗

∥∥∥
1
≤

2

1−γ

√
3|S||A|+4log 1

δ′

2N
, (4.9)

which allows us to conclude the proof using union bounds.

4.3.1. THEOREM 4 DISCUSSION

SPIBB and Soft-SPIBB safe policy improvement guarantees exhibit a trade-off (controlled
with their respective hyper-parameters 1p

m
and σ) between upper bounding the true

policy improvement error (first term in Theorem 1) and allowing maximal policy im-
provement in the MLE MDP (next terms). When the hyper-parameters are set to 0, the
true policy improvement error is null because, trivially, no policy improvement is al-
lowed: the algorithm is forced to reproduce the baseline. When the hyper-parameters
grow, larger improvements are permitted, but the error upper bound term also grows.
When the hyper-parameters tend to +∞, the algorithms are not constrained anymore
and find the optimal policy in the MLE MDP. In that case, the error is no longer upper
bounded, resulting in poor safety performance.

When using the MLE baseline instead of the true baseline, Theorem 4 introduces an-
other error to the upper bound term accounting for the accurateness of the baseline esti-
mate that cannot be reduced by hyper-parameter settings. That fact is entirely expected,
as otherwise, we could consider an empty dataset, pretend it was generated with an op-
timal policy, and expect a safe policy improvement over it. Another interesting point is
that the bound depends on the number of trajectories, not the number of state-action
visits, nor the total number of samples. Indeed, even with a huge number of samples,
if there were collected only from a few trajectories, the variance may still be high since
future states visited on the trajectory depend on the previous transitions.

Regarding the MDP parameters dependency, the upper bound grows as the square
root of the state set size, as for standard SPIBB, but also grows as the square root of the
action set size contrarily to SPIBB that has a logarithmic dependency, which may cause
issues in some RL problems. The direct horizon dependency is the same (linear). But one
could argue that it is actually lower. The maximal value Vmax in the SPIBB bounds can

reach R⊤
1−γ , making the dependency in H quadratic, while the N in our denominator may

be regarded as a hidden horizon (since N ≈ |D|
H), making the total dependency ≈ H 3/2.

In both cases, those are better than the Soft-SPIBB cubic dependency.

One may consider other baseline estimates than the MLE, using Bayesian priors, for
instance, and infer new bounds. This should work as long as the baseline estimate re-
mains a policy that could have generated the dataset.

4.4. EMPIRICAL ANALYSIS

4

57

4.4. EMPIRICAL ANALYSIS
Our empirical analysis reproduces the most challenging experiments found in Laroche
et al. (2019) and Nadjahi et al. (2019). We split it into two parts: the first considers ran-
dom MDPs with finite state spaces, and the second considers MDPs with continuous
state spaces.

4.4.1. RANDOM FINITE MDPS
The objective of this experiment is to empirically analyze the consistency between the
theoretical findings and the practice. The experiment is run on finite MDPs that are
randomly generated, with randomly generated baseline policies from which trajectories
are obtained.

SETUP

The true environment is a randomly generated MDP with 50 states, 4 actions, and a tran-
sition connectivity of 4: a given state-action pair may transit to 4 different states at most.
The reward function is 0 everywhere, except for transitions entering the goal state, in
which case the trajectory terminates with a reward of 1. The goal state is the hardest
state to reach from the initial one.

The baselines are also randomly generated with a predefined level of performance
specified by a ratio χ between the performance of the optimal policy π∗ and the perfor-
mance of the uniform policy π̃: V (πb ,M) =χV (π∗,M)+(1−χ)V (π̃,M). For more details
on the process, we refer the interested reader to Laroche et al. (2019, Section B.1.4). Our
experiments consider two values for χ: 0.1 and 0.9. We also study the influence of the
dataset size |D| ∈ [10,20,50,100,200,500,1000,2000].

COMPETING ALGORITHMS

Our plots display 9 curves:

i. π∗: the optimal policy,

ii. πb : the true baseline,

iii. π̂b : the MLE baseline,

iv. Πb/Π̂b-SPIBB: SPIBB with their respective baselines,

v. Πb/Π̂b-Soft: Soft-SPIBB with their respective baselines,

vi. RaMDP: Reward-adjusted MDP,

vii. and Basic RL: dynamic programming on the MLE MDP.

All the algorithms are compared using their optimal hyper-parameter according to
previous work. Our hyper-parameter search with the MLE baselines did not show signif-
icant differences, and we opted to report results with the same hyper-parameter values.
Soft-SPIBB algorithms are the ones coined as Approx. Soft SPIBB by Nadjahi et al. (2019).

4

58 4. SAFE POLICY IMPROVEMENT WITH AN ESTIMATED BEHAVIOR POLICY

101 102 103

number of trajectories in dataset D

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

N
or

m
al

iz
ed

pe
rf

or
m

an
ce
ρ

(m
ea

n)

π∗

πb

π̂b

Πb-SPIBB

Π̂b-SPIBB

Πb-So�

Π̂b-So�

RaMDP
Basic RL

101 102 103

number of trajectories in dataset D

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

N
or

m
al

iz
ed

pe
rf

or
m

an
ce
ρ

(1
%

-q
ua

nt
ile

)

π∗

πb

π̂b

Πb-SPIBB

Π̂b-SPIBB

Πb-So�

Π̂b-So�

RaMDP
Basic RL

Figure 4.1: Finite MDPs with χ = 0.9, m = 7 and σ = 0.5. On the left, the mean curves, on the right, the
1st percentile curves.

PERFORMANCE INDICATORS

Given the random nature of the MDP and baseline generations, we normalize the per-
formance assuming V (πb ,M∗) <V (π∗,M∗) to allow inter-experiment comparison:

ρ =
V (π,M∗)−V (πb ,M∗)

V (π∗,M∗)−V (πb ,M∗)
. (4.10)

Thus, the optimal policy always has a normalized performance of 1, and the true base-
line a normalized performance of 0. A positive normalized performance means a pol-
icy improvement, and a negative normalized performance means an infringement of
the policy improvement objective. Figures either report the average normalized perfor-
mance of the algorithms or its 1st percentile3. Each setting is processed on 250K seeds
to ensure that every performance gap visible to the naked eye is significant.

EMPIRICAL RESULTS

We start our analysis considering Figure 4.1, which shows the results for χ= 0.9, the hard
setting where the behavior baseline is almost optimal, and therefore difficult to improve.

Performance of the estimated policy. First, we notice that the mean performance of
the MLE baseline π̂b is slightly lower than the true baseline policy πb for small datasets.
As |D| increases, the performance of π̂b quickly increases to reach the same level. The
1st percentile is significantly lower when the number of trajectories is reduced.

Soft-SPIBB with true and estimated baselines. Comparing the results of Πb-Soft and
Π̂b-Soft curves, it is surprising that the policy computed using an estimated policy as a
baseline yields better results than the one computed with the true policy. Notice that the
estimated baseline π̂b has a higher variance than the true baseline πb . If we consider the
impact of this variance in a given state, it means that sometimes the best (resp. worst)
action will be taken more often (resp. less). When it is the case, the trained policy will be
better than what could have been done with the true baseline. Sometimes, the opposite

3Note the difference with previously reported results in SPIBB papers, which focused on the conditional value
at risk indicator.

4.4. EMPIRICAL ANALYSIS

4

59

101 102 103

number of trajectories in dataset D

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0
N

or
m

al
iz

ed
pe

rf
or

m
an

ce
ρ

(m
ea

n)

π∗

πb

π̂b

Πb-SPIBB

Π̂b-SPIBB

Πb-So�

Π̂b-So�

RaMDP
Basic RL

101 102 103

number of trajectories in dataset D

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

N
or

m
al

iz
ed

pe
rf

or
m

an
ce
ρ

(1
%

-q
ua

nt
ile

)

π∗

πb

π̂b

Πb-SPIBB

Π̂b-SPIBB

Πb-So�

Π̂b-So�

RaMDP
Basic RL

Figure 4.2: Finite MDPs with χ = 0.1, m = 7 and σ = 0.5. On the left, the mean curves, on the right, the
1st percentile curves.

will happen, but in this case, the algorithm will try to avoid reaching this state and choose
an alternative path. This means that in expectation, this does not average out, and the
variance in the baseline estimation might be beneficial.

SPIBB with true and estimated baselines. Analyzing the performance of the Π̂b-SPIBB
algorithm, we notice that it also slightly improves over Πb-SPIBB on the mean normal-
ized performance. As far as safety is concerned, we see that the 1st percentile of policies
computed with Π̂b-SPIBB falls close to the 1st percentile of the estimated baseline π̂b for
small datasets and close to the 1st percentile of the policies Πb-SPIBB for datasets with
around 100 trajectories. It is expected as Π̂b-SPIBB tends to reproduce the baseline for
very small datasets and improves over it for larger ones. That statement is also true of
Π̂b-Soft.

RaMDP and Basic RL. Finally, it is interesting to observe that although RaMDP and Ba-
sic RL can compute policies with high mean performance, these algorithms often return
policies performing much worse than the MLE policy π̂b (as seen in their 1st percentile).

The easy setting. Figure 4.2 shows the results for χ = 0.1, so the performance of the
baseline policy is low, and it is easy to find an improved policy. We notice that all algo-
rithms show a reliable performance improvement over the baseline. The 1st percentile
of the estimated policy is slightly below the true behavior policy with small datasets and,
naturally, the Π̂b-SPIBB shows similar behavior.

4.4.2. CONTINUOUS MDPS
In this section we consider MDPs with a continuous state space S ⊆ Rn , in this case a
state is a vector s ∈ S, nevertheless, for simplicity we maintain the notation as s ∈ S. A
challenge to apply the SPIBB algorithms in this setting is the requirement of counting
how often a state-action was observed.

HELICOPTER DOMAIN

For MDPs with continuous state space, we focus on the helicopter environment (Laroche
et al., 2019, Figure 4.3). In this stochastic domain, the state is defined by the position

4

60 4. SAFE POLICY IMPROVEMENT WITH AN ESTIMATED BEHAVIOR POLICY

Figure 4.3: The helicopter environment (Laroche et al., 2019).

and velocity of the helicopter. The agent has a discrete set of 9 actions to control the
thrust applied in each dimension. The helicopter begins in a random position of the
bottom-left corner with a random initial velocity. The episode ends if the helicopter’s
speed exceeds some threshold, giving a reward of -1, or if it leaves the valid region, in
which case the agent gets a reward between -1 and 10 depending on how close it is to the
top-right corner.

BEHAVIOR CLONING

In infinite MDPs, there is no MLE baseline definition. We have to lean on behavior
cloning techniques. We compare here two straightforward ones in addition to the true
behavior policyπb : a baseline estimate π̂c based on the same pseudo-counts used by the
algorithms, and a neural-based baseline estimate π̂n that uses a standard probabilistic
classifier.

The count-based policy follows a principle similar to the MLE policy. It uses a pseudo-
count for state-action pairs η̃(s, a) defined according to the sum of the euclidean dis-
tance

∥∥s − s′
∥∥

2 from the state s and all states of transitions in the dataset where the ac-
tion a was executed (Laroche et al., 2019, Section 3.4):

η̃D(s, a) =
∑{〈

s j ,a j ,r j ,s′j
〉
∈D

∣∣∣ a j =a
}max

(
0,1−

∥∥s − s j
∥∥

2

d0

)
, ∀s, a ∈ S×A,

where d0 is a hyper-parameter to impose a minimum similarity before increasing the
counter of a certain state. We also compute the state pseudo-count using this principle:

η̃D(s) =
∑

a∈A
η̃D(s, a), ∀s ∈ S.

This way, we can define the count-based baseline estimate replacing the count in Equa-
tion 4.6 by its pseudo-count counterpart:

π̂c (a | s) =
{ η̃D (s,a)

η̃D (s) if η̃D(s) > 0,
1
|A| otherwise,

∀s, a ∈ S×A. (4.11)

4.4. EMPIRICAL ANALYSIS

4

61

The neural-based policy π̂n(a | s) is estimated using a supervised learning approach.
We train a probabilistic classifier using a neural network to minimize the negative log-
likelihood with respect to the actions in the dataset.

We use the same architecture as the one used to train the Double-DQN models,
which is shared among all the algorithms in the helicopter domain experiments: a fully
connected neural network with 3 hidden layers of 32, 128, and 28 neurons, respectively,
and 9 outputs corresponding to the 9 actions.

To avoid overfitting, we split the dataset into two parts: 80% for training and 20% for
validation. During training, we evaluate the classifier on the validation dataset at the end
of every epoch and keep the network with the smallest validation loss.

COMPETING ALGORITHMS

We consider results for 11 algorithms and baselines:

• πb : the true baseline,

• π̂c : the pseudo-count-based estimate of the baseline,

• π̂n : the neural-based estimate of the baseline,

• Πb/Π̂c /Π̂n-SPIBB: SPIBB with their respective baselines,

• Πb/Π̂c /Π̂n-Soft: Soft-SPIBB with their respective baselines,

• RaMDP: Double-DQN with Reward-adjusted MDP, and

• Double-DQN: basic deep RL algorithm.

HYPER-PARAMETERS

Building on the results presented by Nadjahi et al. (2019), we set the hyper-parameters
for the experiments with |D| = 10,000 (|D| = 3,000) as follows: Πb-SPIBB with m = 3 (m =
1), Πb-Soft with σ = 0.6 (σ = 0.8), and RaMDP with κ = 1 (κ = 1.75). For the algorithms
using an estimated baseline we run a parameter search considering m ∈ [2,3,4,5] (m ∈
[0.5,1,2,3]) for SPIBB and σ ∈ [0.4,0.6,0.8,1] (σ ∈ [0.6,0.8,1,1.2,1.5,1.8,2]) for Soft-SPIBB
and set the parameters for the main experiments as follows: Π̂n-SPIBB and Π̂c -SPIBB
with m = 3.0 (m = 1.0), and Π̂n-Soft and Π̂c -Soft with σ= 0.6 (σ= 0.8).

PERFORMANCE INDICATORS

The plots represent for each algorithm a modified box-plot where the caps show the
10th percentile and 90th percentile, the upper and lower limits of the box are the 25th
and 75th percentiles, and the middle line in black shows the median. We also show the
average of each algorithm (dashed lines in green) and finally add a swarm-plot to en-
hance the distribution visualization. The table provides additional details, including the
percentage of policies that showed a performance above the average performance of the
true baseline policy.

THE BASELINE POLICY

To compute the baseline policy, we execute an online DQN algorithm on the underlying
problem but stop before convergence. Then, we apply a softmax function on the Q-
network to obtain the behavior policy πb used on the experiments.

4

62 4. SAFE POLICY IMPROVEMENT WITH AN ESTIMATED BEHAVIOR POLICY

πb π̂n π̂c Πb-SPIBB Π̂n-SPIBB Π̂c-SPIBB Πb-So� Π̂n-So� Π̂c-So� RaMDP Double-DQN

1.88

3.34

2.75

3.16

3.54

Pe
rf

om
an

ce

2.27

1.26

2.97

3.30

3.45

Figure 4.4: |D| = 10,000. The green dashed line shows the average and the caps show the 10% and 90% per-
centile. Each dot on the swarm plots displays the evaluation of a seed.

πb π̂n π̂c Πb-SPIBB Π̂n-SPIBB Π̂c-SPIBB Πb-So� Π̂n-So� Π̂c-So� RaMDP Double-DQN

1.22

2.29
2.23

2.99

2.66

Pe
rf

om
an

ce

2.27

1.47

2.85

2.48

Figure 4.5: |D| = 3,000. The green dashed line shows the average and the caps show the 10% and 90% per-
centile. Each dot on the swarm plots displays the evaluation of a seed.

RESULTS

Using a fixed behavior policy πb we generate 1,000 datasets for each algorithm. We re-
port results for two dataset sizes: 3,000 and 10,000 transitions. The results are reported
numerically in Table 4.1 and graphically on Figure 4.4 for |D| = 10,000 and Figure 4.5 for
|D| = 3,000.

4.4. EMPIRICAL ANALYSIS

4

63

|D| = 3,000 |D| = 10,000

Algorithm π Pr(V (π) >V (πb)) avg perf 10%-qtl 1%-qtl Pr(V (π) >V (πb)) avg perf 10%-qtl 1%-qtl

πb 0.499 2.27 2.22 2.18 0.499 2.27 2.22 2.18
Baseline π̂n 0.002 1.47 1.06 0.75 0.032 1.88 1.57 1.34

π̂c 0.000 1.22 1.13 1.05 0.000 1.26 1.19 1.14

πb 0.928 2.85 2.36 1.90 0.992 3.34 2.99 2.39
SPIBB π̂n 0.582 2.29 1.86 1.43 0.973 2.97 2.61 2.15

π̂c 0.514 2.23 1.73 1.21 0.930 2.75 2.37 1.75

πb 0.990 2.99 2.71 2.31 1.000 3.54 3.21 2.82
Soft-SPIBB π̂n 0.760 2.48 2.12 1.71 0.996 3.30 2.93 2.47

π̂c 0.785 2.66 2.11 1.51 0.980 3.45 2.93 2.09

RaMDP 0.006 0.37 -0.75 -0.99 0.876 3.16 2.13 0.23
Double-DQN 0.001 -0.77 -1.00 -1.00 0.076 0.25 -0.97 -1.00

Table 4.1: Numerical results for the two size of datasets. The key performance indicators are respectively the
percentage of policy improvement over the true baseline, the average performance of the trained policies, the
10th-percentile, and the 1st percentile. For each column, we bold the best performing algorithm that is not
using the true baseline πb .

Empiric baseline policies. On Figure 4.4, we observe that the baseline policies π̂c and
π̂n have a performance poorer than the true behavior policy πb . On the one hand, the
neural-based baseline estimate π̂n can get values close to the performance of the true
behavior policy; however, it has a high variance, and even the 90th percentile is below the
mean of the true policy. On the other hand, the count-based policy π̂c has a low variance,
but it has a much lower mean performance. In general, we observe a larger performance
loss than in finite MDPs between the true baseline and the estimated baseline.

SPIBB. With SPIBB, the neural-based baseline estimate leads to better results for all
indicators. The loss in average performance makes it worse than RaMDP in the |D| =
10,000 datasets, but it is more reliable and yields more consistently to policy improve-
ments. On the |D| = 3,000 datasets (Figure 4.5), it demonstrates a higher robustness with
respect to the small datasets, still compared to RaMDP.

Soft-SPIBB. The Soft-SPIBB results with baseline estimates are impressive. The loss
of performance with respect to Soft-SPIBB with the true baseline is minor. We high-
light that, although the policy based on pseudo-counts has a lower performance than
the true one (1 point difference), it still achieves a strong performance when used with
Soft-SPIBB (less than 0.1 point difference). This indicates that the proposed method is
robust with respect to the performance of the estimated policy. It seems that Soft-SPIBB
changes are much more forgiving than the baseline approximations.

Small dataset. The experiment with a small dataset |D| = 3,000 (Figure 4.5) aims to
evaluate the robustness of these algorithms. We observe that the estimated policies have
a performance even lower than in the experiment with |D| = 10,000. While RaMDP’s per-
formance indicators dramatically plummet, even largely lower than the behavior cloning
policies, the algorithm SPIBB using the estimated policies usually returns policies with
a performance similar to the true baseline πb . Most exciting, the algorithm Soft-SPIBB

4

64 4. SAFE POLICY IMPROVEMENT WITH AN ESTIMATED BEHAVIOR POLICY

5.0 4.0 3.0 2.0
N∧

2.0

2.5

3.0

3.5

4.0

P
er

fo
m

an
ce

Baseline Policy = π̂n

5.0 4.0 3.0 2.0
N∧

A
lg

orith
m

=
Π
b -S

P
IB

B
A

lg
orith

m
=

Π
b -S

P
IB

B

Baseline Policy = π̂c

0.4 0.6 0.8 1.0

ε

2.0

2.5

3.0

3.5

4.0

P
er

fo
m

a
n

ce

Baseline Policy = π̂n

0.4 0.6 0.8 1.0

ε

A
lgo

rith
m

=
Π
b -S

oft
A

lgo
rith

m
=

Π
b -S

oft

Baseline Policy = π̂c

3.0 2.0 1.0 0.5
N∧

1.0

1.5

2.0

2.5

3.0

3.5

P
er

fo
m

a
n

ce

Baseline Policy = π̂n

3.0 2.0 1.0 0.5
N∧

A
lgorith

m
=

Π
b -S

P
IB

B
A

lgorith
m

=
Π
b -S

P
IB

B

Baseline Policy = π̂c

0.6 0.8 1.0 1.2 1.5 1.8 2.0

ε

1.0

1.5

2.0

2.5

3.0

3.5

P
er

fo
m

an
ce

Baseline Policy = π̂n

0.6 0.8 1.0 1.2 1.5 1.8 2.0

ε

A
lgorith

m
=

Π
b -S

oft
A

lgorith
m

=
Π
b -S

oft

Baseline Policy = π̂c

Figure 4.6: |D| = 10,000 in the two first rows and |D| = 3,000 in the two last rows. The green dashed line shows
the average and the caps show the 10th and 90th percentile.

4.5. CONCLUSIONS

4

65

manages to improve upon πb with all the baselines policies, obtaining a mean perfor-
mance above the average performance of πb , and a 10th-percentile slightly lower than
that of the true baseline when using the estimated policies.

Hyper-parameter sensitivity. The hyper-parameter search (Figure 4.6) gave us extra
insights on the behavior of the algorithms SPIBB and Soft-SPIBB using estimated base-
lines. We noticed that these algorithms do not have a high sensitivity to their hyper-
parameters since the performance is stable in a wide range of values, especially the Soft-
SPIBB variations. We sometimes notice a trade-off that has to be made between variance
reduction and expectation maximization.

4.5. CONCLUSIONS
This work addresses the problem of performing safe policy improvement in batch RL
without direct access to the baseline, i.e., the behavior policy of the dataset. We provide
the first theoretical guarantees for safe policy improvement in this setting and show on
finite and continuous MDPs that the algorithm is tractable and significantly outperforms
all competing algorithms that do not have access to the baseline. We also empirically
confirm the limits of the approach when the number of trajectories in the dataset is low.

Currently, the limitation of SPIBB methods is the lack of algorithms to estimate the
parametric uncertainty of the estimated model. Bellemare et al. (2016); Burda et al.
(2019); Fox et al. (2018) investigated some methods for optimism-based exploration,
which proved to not be robust enough for pessimism-based purposes where there is a
requirement for exhaustiveness. Further research on this issue is warranted, but also
on the multi-batch setting where there are several sequential updates (Laroche and Ta-
chet des Combes, 2019) and on problems with continuous action space (Kumar et al.,
2019).

5
SAFE REINFORCEMENT LEARNING

DURING TRAINING

Deploying reinforcement learning (RL) involves major concerns around safety. Engineer-
ing a reward signal that allows the agent to maximize its performance while remain-
ing safe is not trivial. Safe RL studies how to mitigate such problems. For instance, we
can decouple safety from reward using constrained Markov decision processes (CMDPs),
where an independent signal models the safety aspects. In this setting, an RL agent can
autonomously find trade-offs between performance and safety. Unfortunately, most RL
agents designed for CMDPs only guarantee safety after the learning phase, which might
prevent their direct deployment. In this chapter, we investigate settings where a concise
abstract model of the safety aspects is given, a reasonable assumption since a thorough
understanding of safety-related matters is a prerequisite for deploying RL in typical ap-
plications. Factored CMDPs provide such compact models when a small subset of features
describe the dynamics relevant for the safety constraints. We propose an RL algorithm that
uses this abstract model to learn policies for CMDPs safely. During the training process,
this algorithm can seamlessly switch from a conservative policy to a greedy policy without
violating the safety constraints. We prove that this algorithm is safe under the given as-
sumptions. Empirically, we show that even if safety and reward signals are contradictory,
this algorithm always operates safely and, when they are aligned, this approach also im-
proves the agent’s performance. Finally, we study how to reduce the performance regret of
this algorithm, without sacrificing the safety guarantees.

This chapter is based on a paper presented at AAMAS-21 (Simão et al., 2021).

67

5

68 5. SAFE REINFORCEMENT LEARNING DURING TRAINING

As we discussed in Chapter 1, despite all the astonishing successes in Reinforcement
Learning (RL; Sutton and Barto, 2018), safe exploration is still a major concern prevent-
ing the deployment of RL in real world tasks (Amodei et al., 2016). This problem has mo-
tivated the study of Constrained Reinforcement Learning (CRL) to ensure safety (Dulac-
Arnold et al., 2021). In this framework, an agent interacts with an environment modeled
as a Constrained Markov Decision Process (CMDP; Altman, 1999)1 without knowing the
transition, reward, and cost functions. In SRL, the cost function is used as a proxy to
distinguish between safe and unsafe behaviors (García and Fernández, 2015). Therefore,
the agent must find a policy with maximum expected reward among the safe (feasible)
policies, namely those with expected cost smaller than a safety threshold.

We would like to distinguish between two CRL settings. The first is the common set-
ting, where the agent trains in an assumed perfect simulator and only cares about con-
straint violations later, when deployed in the real environment. In this case, safe explo-
ration is not a major issue since the agent is free to explore during the learning period.
The second, which is the focus of this chapter, is what we may call the true setting, where
the agent interacts directly with the environment and is not allowed to violate the con-
straints while learning.

Following the optimism in the face of uncertainty framework to trade-off exploration
and exploitation, Efroni et al. (2020) proposed different algorithms for CRL with bounded
regret in terms of performance and in terms of constraint violation. However, these al-
gorithms may still violate the constraints since they encourage the agent to explore un-
known parts of the environment, making them unsuitable for the true RL setting. We
aim to develop RL algorithms that can learn without violating the constraints, that is,
with no regret in terms of constraint violation.

This leads us to Research Question 5. We observe that often most of the state descrip-
tion is only relevant to the reward signal and does not influence the safety of the agent.
In this setting, it can be easy for an expert to define the dynamics relevant for safety.
Consider, for instance, imposing a limit on the consecutive movements of a robot arm
to avoid overheating or indicating unsafe areas such as stairs on a mobile robot’s map
where the target location is not relevant for safety. Such constraints may be represented
in a compact model and are a prerequisite for deploying RL in practice. Without such
knowledge, typical RL algorithms would need to perform random exploration, which is
not an option in safety-critical applications. Hence, we assume that this compact model
is known and is represented by an abstract CMDP M .

Notice that by assuming access to the abstract model M , we are effectively restricting
our method to a subset of problems, therefore dealing with Research Question 1, regard-
ing which classes of problems are suitable for SRL. This assumption allows us to safely
trade-off exploration and exploitation, so the agent has an incentive to explore, but al-
ways within a set of safe policies. Figure 5.1 shows a CMDP where this kind of abstraction
can be found. In this example, we observe that the variable y does not influence the cost
function. We will use this problem as a running example henceforth.

Constraining the agent to always execute safe policies changes the exploration pro-
cess, which raises Research Question 6 concerned to how the safe exploration affects the
performance of an agent. Therefore, we also investigate the exploration capabilities of

1See Section 2.3 for a formal definition.

5

69

s00 s10 s20

s01 s11 s21

a,b
p

1−
p

a
r = 1
c = 1

b

a,b

p

1−p a c = 1

b r = 1

s0 s1 s2a,b
a c = 1

b

Figure 5.1: A factored CMDP with 2 features (x, y) and 6 states (left) and the corresponding abstract CMDP
built with a cost-model-irrelevant abstraction that ignores the feature y (right). Costs and rewards with value
0 are omitted as well as the probability of deterministic transitions.

the proposed algorithm and how it balances between exploration and safety.
This work uses abstractions in a novel way. The literature usually focuses on build-

ing a policy for M that will later be executed in the ground CMDP M . Our approach,
however, focuses on computing a policy in the ground CMDP M and uses the abstract
model M to guarantee safety, which decouples the safety concerns from the reward.

The contributions of this chapter are four-fold:

i. we study the kind of abstraction sufficient to concisely describe and distill safety
dynamics;

ii. we devise an example of such an abstract model using Factored Markov Decision
Processes (Boutilier et al., 1995);

iii. assuming the abstract model of the safety dynamics is given, we propose a safe
algorithm that learns an optimal policy for the CMDP without violating the con-
straints; and

iv. we show that this algorithm is always safe and has no regrets in terms of constraint
violation.

The empirical analysis showcases the overall capabilities of the proposed algorithm:

i. as expected, it respects the constraints during training;

ii. given enough budget for exploration, it eventually achieves optimal performance;
and

iii. when the cost function is aligned with the reward function, it reduces the perfor-
mance regret.

The code to reproduce all experiments is available online2.

2https://github.com/AlgTUDelft/AlwaysSafe.

https://github.com/AlgTUDelft/AlwaysSafe

5

70 5. SAFE REINFORCEMENT LEARNING DURING TRAINING

5.1. CONSTRAINED REINFORCEMENT LEARNING
In Reinforcement Learning (RL; Sutton and Barto, 2018), the agent does not have access
to the description of the underlying MDP, so it must find a balance between exploration,
to learn about the environment potentially increasing its performance, and exploitation,
taking advantage of its current knowledge to collect rewards, as discussed in Section 2.4.
The difference between the value of the policy executed and the value of the optimal pol-
icy, called regret, is one measure of the efficiency of RL algorithms. Intuitively, an agent
with bounded regret can make a good trade-off between exploration and exploitation.

In CRL, the agent interacts with a CMDP instead of an MDP. This changes the effi-
ciency metrics used to evaluate the agent, as well as the way the agent solves the prob-
lem, as we discuss in this section.

5.1.1. EFFICIENCY METRICS
To evaluate the efficiency of constrained RL algorithms we may consider two types of
regret: performance regret and constraint violation regret (Efroni et al., 2020). The per-
formance regret is similar to the one in traditional episodic RL settings (Auer and Ortner,
2006; Jaksch et al., 2010; Neustroev and de Weerdt, 2020):

Reg(K ,R) =
∑

k∈NK

[
V π∗

R (µ)−V πk
R (µ)

]
+

,

where [x]+ = max{ x,0} and K is the number of episodes. Note that this definition ig-
nores values larger than the value of the optimal policy (this is only possible if the con-
straint is violated). The constraint violation regret is the cumulative cost violation:

Reg(K ,C) =
∑

k∈NK

[
V πk

C (µ)− ĉ
]
+ .

In this case, we note that there is only regret when the expected cost is higher than the
given bound, so a policy has no regret for having an expected cost lower or equal to the
bound. In the next section, we describe an algorithm for CRL with bounded regret.

5.1.2. SOLVING CMDPS WITH OPTIMISM
OptCMDP (Efroni et al., 2020, Algorithm 6) extends the UCRL2 algorithm (Jaksch et al.,
2010) to the CMDP setting. This algorithm requires no knowledge about the components
of the CMDP and bounds the performance regret with respect to the optimal policy as
well as the constraint violation regret.

Intuitively, at the beginning of each episode, OptCMDP defines a set of CMDPsΣ that
contains the true CMDP M with high probability 1−δ. It computes an optimistic policy,
assuming it can also choose the best CMDP in Σ:

arg max
P ′,R ′,C ′∈Σ,π∈Σ

V πk

R ′ (µ) s. t. V πk

C ′ (µ) ≤ ĉ. (5.1)

Then, the algorithm executes the optimistic policy for one episode, collecting data to
update Σ. Over time the set Σ shrinks, and the optimistic policy approaches the optimal
policy.

5.1. CONSTRAINED REINFORCEMENT LEARNING

5

71

Algorithm 6 OptCMDP

Input: δ ∈ (0,1) : confidence level.
1: for k ∈ [1, · · · ,K] do
2: Update the empirical model.
3: Compute πk with LP2.
4: Execute policy πk for one episode.
5: end for

Efroni et al. (2020) show that, under an optimistic perspective, we can simplify the
problem in Equation 5.1 by choosing the upper bound of the reward function and the
lower bound of the cost function. Therefore, using f̂ to denote the maximum likelihood
estimate of the function f , we only consider a set of transition functions when defin-
ing Σ:

Σ=

P ′,R ′,C ′

∣∣∣∣∣∣∣∣
P ′ ∈ [

P̂ (s′ | s, a)−eP
δ (s, a, s′), P̂ (s′ | s, a)+eP

δ (s, a, s′)
]

,

R ′ = R̂(s, a)+eR
δ (s, a),

C ′ = Ĉ (s, a)−eC
δ (s, a),∀s, a, s′ ∈ S,A,S

 ,

where the confidence intervals eP
δ

, eR
δ

and eC
δ

are based on the Bernstein inequality (for
the transition function) and Hoeffding’s inequality (for the cost and reward function)
(Hoeffding, 1963). We refer to Efroni et al. (2020, Equation 20) for a detailed derivation
of the confidence intervals such that Pr(M ∈ Σ) ≥ 1−δ. Now we can solve the problem
in Equation 5.1 with the following optimistic LP (Efroni et al., 2020; HasanzadeZonuzy
et al., 2021; Rosenberg and Mansour, 2019):

max
∑

s,a,t∈S×A×NH

yt (s, a)(R̂(s, a)+eR
δ (s, a)) s. t. C3–C5︸ ︷︷ ︸

LP1

,C7–C9. (LP2)

∑
s,a,t∈S×A×NH

yt (s, a)(Ĉ (s, a)−eC
δ (s, a)) ≤ ĉ. (C7)

xt (s, a, s′) ≤ (P̂ (s′ | s, a)+eP
δ (s, a, s′))yt (s, a) ∀(s, a, s′, t) ∈ S×A×S×NH . (C8)

xt (s, a, s′) ≥ (P̂ (s′ | s, a)−eP
δ (s, a, s′))yt (s, a) ∀(s, a, s′, t) ∈ S×A×S×NH . (C9)

Compared to LP1, LP2 replaces the equality C6 by two inequalities, which ensures that
the chosen transition function is close to the true transition function with high proba-
bility. Besides an optimistic policy, computed by Equation 2.4, a solution for this LP also
gives us the optimistic transition function picked for problem in Equation 5.1:

P ′
t (s′ | s, a) = xt (s, a, s′)

yt (s, a)
, ∀t ∈NH .

Over the episodes, as the agent collects more experiences, the estimate P̂ improves as
the confidence interval eP

δ
narrows. This way, P ′ approaches P and the policy computed

by LP2 gets closer to an optimal one.

5

72 5. SAFE REINFORCEMENT LEARNING DURING TRAINING

Even though the OptCMDP algorithm has bounded constraint violation regret, in
safety-critical applications, even a small regret would not be acceptable, so this algo-
rithm could not be directly deployed in real world tasks. In the next section, we present
a model that allows us to compactly represent a CMDP. Later, we will use this model to
define a compact abstraction of the dynamics that are relevant for the safety constraints
and use it to build a CRL algorithm with no constraint violation regret.

5.2. ABSTRACTION FOR EXPECTED COST

Before describing our method, let us consider the robot with an arm that can overheat
again. In this example, we could keep track of how often the motor was activated in
the last hour and constraint the RL agent’s policies to avoid excessive consecutive move-
ments. This is a simple example of an abstraction that lets the robot act safely. In this
section, we will formalize an abstract version of the problem that captures the knowl-
edge required to ensure safety in the CRL setting. As an example, we explore factored
CMDPs where the cost function is independent of some variables, namely, only a subset
of the variables is relevant for the constraints.

Following the definitions by Li et al. (2006), we denote a state abstraction function
by φ : S → S, where S is the finite abstract state space. The inverse of φ is denoted by
φ−1 : S→ 2S, that is φ−1(s) is the set of ground states whose abstract state is s according
to φ. Given a CMDP M = 〈 S,A,P ,R,γ,µ, H ,C , ĉ 〉 and an abstraction function φ, the
respective abstract CMDP is Mφ = 〈 S,A,P ,R,µ,C , ĉ 〉, where

P (s′ | s, a) =
∑

s∈φ−1(s)

∑
s′∈φ−1(s′)

w(s)P (s′ | s, a),

R(s, a) =
∑

s∈φ−1(s)

w(s)R(s, a),

C (s, a) =
∑

s∈φ−1(s)

w(s)C (s, a),

µ(s) =
∑

s∈φ−1(s)

µ(s)

and w(s) indicates the contribution of each state s ∈ φ−1(s) to the abstract state s, with
the constraint that

∑
s∈φ−1(s) w(s) = 1.

5.2.1. COST-MODEL IRRELEVANCE

Li et al. (2006, Definition 3) use the above formalism to define different types of abstrac-
tions. For instance, Qπ

R -irrelevant abstractions preserve the Qπ
R function. This may be

useful when solving an MDP, as we could compute Qπ
R over the abstract state space,

which can speed up the convergence of an MDP solver (Gopalan et al., 2017) or an RL
agent (van Seijen et al., 2014). Following this idea, we define an abstraction related to the
model necessary to compute the expected cost V π

C .

Definition 1. Given a CMDP M = 〈 S,A,P ,R,γ,µ, H ,C , ĉ 〉, we say that an abstraction

5.2. ABSTRACTION FOR EXPECTED COST

5

73

function φ is cost-model-irrelevant when

φ(s1) =φ(s2) ⇒
∑

s′∈φ−1(s)

P (s′ | s1, a) =
∑

s′∈φ−1(s)

P (s′ | s2, a) and

C (s1, a) =C (s2, a) ∀a, s1, s2, s ∈A×S×S×S. (5.2)

Definition 1 is similar to model-irrelevance (Li et al., 2006), considering the cost func-
tion instead of the reward function. It says that if a cost-model-irrelevant abstraction
maps two states to the same abstract state, then the cost of executing action a ∈A and
the distribution over the next abstract state is the same in both states.

We would like to use prior knowledge of a model of the abstract CMDP to guarantee
that a policy for the ground CMDP will not violate the cost constraints. So, while most
literature on abstraction for RL is interested in deploying the policy computed in the
abstract CMDP to the ground CMDP, we use the abstract CMDP to test the safety of a
policy defined in the ground CMDP.

5.2.2. A COST-MODEL-IRRELEVANT ABSTRACTION
Similar to FMDPs (Section 2.2), a factored CMDP compactly represents a CMDP using a
DBN. The only addition is the cost function that similarly to the reward function can be
succinctly represented by the sum of C local functions, respectively:

C (s, a) =
∑

i∈NC

Ci (s[∆C
i], a),

where Ci is the i -th local cost function that only depends on the subset of variables∆C
i ⊆

X.
In factored CMDPs, we can define a cost-model-irrelevant abstraction by consider-

ing only the subset of state variables that influence the cost function. Given a set of vari-
ables ∆ ⊆ X , we define their parents as Pa(∆) = ⋃

Xi ,a∈∆×A Paa(Xi) and their ancestors
as:

Anc(∆) =
{
∆ if Pa(∆) ⊆∆,

Anc(Pa(∆)∪∆) otherwise.

Intuitively, the set Anc(∆) might influence∆ over multiple time steps, while the set Pa(∆)
are only variables that have an immediate influence on∆. Let Pa(C) =∪i∈NC∆

C
i be the set

of variable that directly influences the cost function, we define a cost-model-irrelevant
abstraction φC based on their ancestors Anc(Pa(C)):

φC (s[X]) = s[Anc(C)]. (5.3)

Our running example (Figure 5.1) shows an instance of such abstraction. The efficiency
of this abstraction, related to the size reduction from the original CMDP to the abstract
CMDP, corresponds to the size of the set of ancestors of the cost function: |Anc(C)|. For
instance, if Anc(C) =X, this abstraction would be the identity function and the abstract
CMDP would be the same as the original. If, however, Anc(C) = ;, the abstract CMDP
would contain a single state since the cost function is independent of the state variables.

5

74 5. SAFE REINFORCEMENT LEARNING DURING TRAINING

Theorem 5. φC is a cost-model-irrelevant abstraction.

Proof. Given a, s1, s2, s ∈A×S×S×S. If φC (s1) =φC (s2), then we have

C (s1, a) =
∑

i∈NC

Ci (s1[∆C
i], a)

=
∑

i∈NC

Ci (s2[∆C
i], a)

=C (s2, a).

The first and last derivations come from the definition of the factored cost function. The
middle derivation comes from the fact that both states were mapped together, so from
Equation 5.3 we conclude that s1[∆C

i] = s2[∆C
i] : ∀i ∈NC.

In the following derivation, we use P (s′[∆] | s, a) = ∏
X∈∆P (s′[X] | s, a) where ∆ ⊆ X,

s, a, s′ ∈ S×S×A and Anc(C) =X\ Anc(C).
If φC (s1) =φC (s2), then we have∑

s′∈φ−1(s)

P (s′ | s1, a) =
(a)

∑
s′∈φ−1(s)

P (s′[X] | s1, a),

=
(b)

∑
s′∈φ−1(s)

P (s′[Anc(C)] | s1, a)P (s′[Anc(C)] | s1, a),

=
(c)

∑
s′∈φ−1(s)

P (s[Anc(C)] | s1, a)P (s′[Anc(C)] | s1, a),

=
(d)

P (s[Anc(C)] | s1, a)
∑

s′∈φ−1(s)

P (s′[Anc(C)] | s1, a)︸ ︷︷ ︸
=1(sum over all values of Anc(C))

,

=
(e)

P (s[Anc(C)] | s1, a)

=
(f)

∏
Xi∈Anc(C)

P (s[Xi] | s1[Paa(Xi)], a)

=
(g)

∏
Xi∈Anc(C)

P (s[Xi] | s2[Paa(Xi)], a)

=
(h)

∑
s′∈φ−1(s)

P (s′ | s2, a).

In this derivation,

(a) shows we are considering the values of each variable in state s′;

(b) decouples ancestors from non-ancestors;

(c) removes the dependence on the state s′, since ∀s′ ∈φ−1
C (s), the values of variables

in Anc(C) are the same, by the definition of φC (Equation 5.3);

(d) factors out the probability term, since it is now independent of s′;

(e) removes the summation that results in 1;

5.2. ABSTRACTION FOR EXPECTED COST

5

75

(f) uses the conditional independence from the factored CMDP;

(g) swaps s1 and s2, since they were mapped to the same abstract state, the values of
their parents are the same;

(h) uses the same reasoning from (f) to (a).

While φC is a convenient and natural cost-model-irrelevant abstraction, it is not nec-
essarily the most compact. We refer to Givan et al. (2003) for a discussion on how to find
more compact abstract models in factored MDPs.

5.2.3. PLANNING WITH THE ABSTRACT CMDP
Given a cost-model-irrelevant abstraction, we extend LP1 to take this knowledge into
consideration by adding variables z that represents the occupancy of each pair of ab-
stract states and action for each time step. Our goal is to decouple the expected cost
from the full transition function to ensure that the policy computed still respects the
cost constraints.

max
∑

s,a,t∈S×A×NH

yt (s, a)R(s, a) s. t. C3–C6︸ ︷︷ ︸
LP1

,C10–C12. (LP3)

∑
s,a,t∈S×A×NH

zt (s, a)C (s, a) ≤ ĉ. (C10)

zt (s, a) =
∑

s∈φ−1(s)

yt (s, a) ∀s, a, t ∈ S×A×NH . (C11)

∑
a∈A

zt (s, a) =
∑

s◦,a◦∈S×A
P (s | s◦, a◦)zt−1(s◦, a◦) ∀s, t ∈ S×NH \ {1}. (C12)

In LP3, constraint C11 helps us to connect the flow from the ground CMDP and the
abstract CMDP by ensuring that the flow leaving an abstract state is the sum of the flow
that leaves the respective ground states. Constraint C10 replaces constraint C1, notice
that it uses the abstract cost function and the expected cost is computed according to
the occupancy of the abstract CMDP. Finally, constraint C12 ensures that the flow of the
abstract CMDP respects the abstract transition function. Although this last constraint is
redundant since this flow is already specified in the ground CMDP, it will be important
for our method later when we do not have access to the underlying transition function.

Since LP3 keeps variables for the ground CMDP and the abstract CMDP, the policy it
computes in the ground CMDP might be different in states that were merged. In other
words, the policy that is induced by the abstract variables z is different from the policy
that is induced by the ground variables x and y .

In the next section, we show how to use this formulation to devise an RL algorithm
compliant with the safety constraints.

5

76 5. SAFE REINFORCEMENT LEARNING DURING TRAINING

Algorithm 7 AbsOptCMDP-πG

Input: δ ∈ (0,1) : confidence level.
Input: M : cost-model-irrelevant CMDP.

1: for k ∈ [1, · · · ,K] do
2: Update the empirical model.
3: Compute πk using M according to LP4 and Equation 5.5.
4: Execute policy πk for one episode.
5: end for

5.3. ALWAYS SAFE
Now we consider the setting where the agent has access to the abstract CMDP generated
from a cost-model irrelevance abstraction but does not have access to the full transition
function or the reward function. We propose an algorithm that computes a policy for the
underlying CMDP without incurring any constraint violation regret using an optimistic
approach.

5.3.1. THE LINEAR PROGRAM
The idea is to combine the abstract CMDP created with a cost-model-irrelevant abstrac-
tion (Section 5.2.1) with an optimistic approach for exploration (Section 5.1.2). LP4 puts
all the pieces together:

max
∑

s,a,t∈S×A×NH

yt (s, a)(R̂(s, a)+eR
δ (s, a)) s. t. C3–C5︸ ︷︷ ︸

LP1

,C8–C9︸ ︷︷ ︸
LP2

,C10–C12︸ ︷︷ ︸
LP3

. (LP4)

The main difference between LP4 and LP2 is the use of the extra variables z that repre-
sent the flow in the abstract CMDP. Therefore we replace C7 that constrains the expected
cost on the ground CMDP by C10 that constrains the expected cost in the abstract CMDP.
The constraints C10–C12 control the flow in the abstract CMDP.

We can compile two basic policies using a solution for LP4. A ground policy πG using
y and an abstract policy πA using z:

πA(a | s, t) = zt (φ(s), a)∑
a′∈A zt (φ(s), a′)

∀s, a, t ∈ S×A×NH , (5.4)

πG (a | s, t) = yt (s, a)∑
a′∈A yt (s, a′)

∀s, a, t ∈ S×A×NH . (5.5)

The algorithm AbsOptCMDP-πG (Algorithm 7) follows policy πG in each episode. We
conjecture that it has a bounded performance regret, inherited from the OptCMDP al-
gorithm, since it makes the same assumptions. However, it can still exhibit some safety
violation stemming from the unknown transition function (see Example 5).

Example 5 (πG might be unsafe.). Let us consider the CMDP from Figure 5.1 from an
optimistic perspective. We may assume that our estimate of transition function is perfect,
p̂ = p, but we still have some uncertainty about it, represented by e(p). This way, we know
p ∈ [p̂ − e(p), p̂ + e(p)]. In the optimistic CMDP, we are also picking the parameters of the

5.3. ALWAYS SAFE

5

77

transition function. This means the agent chooses the value of p, which in this case would
be the lower bound p̂ −e(p) since it minimizes the chance of reaching state s10. Following
the same reasoning as in Example 2, we find a greedy policy πG (a | s10) = ĉ

p−e(p) which is

unsafe, since it is larger than the maximum value we found in Example 2 (π∗(a | s10) = ĉ
p).

Theorem 6. Given an uncertainty set Σ containing the underlying CMDP M , and the
abstract CMDP Mφ = 〈 S,A,P ,R,µ,C , ĉ 〉 built according to a cost-model-irrelevant ab-
straction φ, the policy πA computed according to LP4 and Equation 5.4 does not violate
the constraints when applied in M : V πA

C (µ) ≤ ĉ.

Proof sketch. Li et al. (2006) show that a model-irrelevant abstraction preserves the ex-
pected value. In the same way, a cost-model-irrelevant abstraction preserves the ex-
pected cost. So, the policy computed in the abstract state has the same expected cost in
the ground state, V πA

C (µ) =V πA

C
(µ). From the constraint C10 in LP4, we have V πA

C
(µ) ≤ ĉ.

Therefore, V πA
C (µ) ≤ ĉ.

Theorem 6 essentially shows that the policy πA is safe, independent of the uncer-
tainty over the transition function. However, this policy is not expressive enough to de-
scribe an optimal policy for the underlying CMDP; for instance, its domain might ignore
variables that influence the reward function (see Example 6).

Example 6 (πA might be sub-optimal.). Considering the CMDP from Figure 5.1 again, we
may notice that a policy defined in the abstract MDP would assign at most probability ĉ to
action a in the abstract state s1, while a policy defined on the ground state can distinguish
between s10 and s11, as we saw in Example 2.

5.3.2. POLICIES
In this section, we study how to switch between πA and πG , to find an RL algorithm that
has no constraint regret and can still find an optimal policy for the underlying CMDP.

POLICY πT

To devise an algorithm that can eventually find an optimal policy for the underlying
CMDP, we propose to use the ground policy based on a test:

πT =
{
πG if maxP ′∈ΣV πG

C (µ) ≤ ĉ

πA otherwise.
(5.6)

To test if we can deploy πG , we compute the maximum expected cost within the uncer-
tainty set, fixing the policy πG :

max
x,y,z

∑
s,a,t∈S×A×NH

zt (s, a)C (s, a)

s. t. C3–C5︸ ︷︷ ︸
LP1

,C8–C9︸ ︷︷ ︸
LP2

, C11︸︷︷︸
LP3

,C13.
(LP5)

yt (s, a) = πG (a | s, t)
∑

a′∈A
yt (s, a′) ∀s, a, t ∈ S×A×NH . (C13)

5

78 5. SAFE REINFORCEMENT LEARNING DURING TRAINING

Algorithm 8 Dynamic Constraint Tightening (πα)

Input: Σ: uncertainty set
Input: M : abstract model
Input: α: learning rate
Input: β: coefficient lower bound (default: 0)

1: β← 1
2: repeat
3: y, z,status ← solve LP4 with βĉ
4: if (status is infeasible) or (β≤β) then
5: πα←πA ▷ Equation 5.4 based on z
6: return πα
7: end if
8: πα←πG ▷ Equation 5.5 based on y
9: maxV ← maxP ′∈ΣV πα

C (µ) ▷ LP5 based on πα

10: β←β−αmax{maxV −ĉ,0}
ĉ

11: until maxV ≤ ĉ
12: return πα

VC

ĉ0 = ĉ
β = 1

VC

ĉĉ1

β = 0.9

VC

ĉĉ2

β = 0.85

VC

ĉĉn

Safe Policy

Figure 5.2: Search for a ground policy that respects the constraints in all CMDPs from the uncertainty set Σ.
The x-axis indicates the expected cost, and the y-axis indicates the frequency we can find a CMDP in Σ for
which the policy computed has that expected cost.

In this LP, the constraint C13 is derived from Equation 2.4 to ensure that the pol-
icy πG is applied in every ground state. The value of πG (a | s, t) are constants computed
by Equation 5.5 according to the solution of LP4, for every state, action and time step.
Intuitively, LP5 chooses the transition function in the uncertainty set Σ with the highest
expected cost.

Although this approach could be more efficient, for instance if we tested whether
∃P ′ ∈ Σ : V πG

C (µ) > ĉ, we opt to compute the maximum expected cost, because it gives
us an indication of how much the constraint might be violated. This can help us find a
more conservative policy in the ground CMDP, as we describe next.

POLICY πα
The previous solution may never choose the ground policy πG , in particular when the
optimal policy has an expected cost close to the bound ĉ. In this case, even a small
confidence interval could put the maximum expected cost above the given cost bound.
Inspired by de Nijs et al. (2017), we propose to compute a policy that is more conservative

5.3. ALWAYS SAFE

5

79

Algorithm 9 AlwaysSafe

Input: δ ∈ (0,1) : confidence level.
Input: M : cost-model-irrelevant CMDP.

1: for k ∈ [1, · · · ,K] do
2: Update the empirical model.
3: Compute πk using M and Equation 5.4, Equation 5.6 or Algorithm 8.
4: Execute policy πk for one episode.
5: end for

such that it passes the test from Equation 5.6. Our strategy is to compute policies for a
tighter bound ĉ3.

Algorithm 8 describes one way to compute such a policy. The algorithm initializes
the coefficient β with value 1. Then, in each iteration, the algorithm solves LP4 using an
adjusted bound βĉ. If the algorithm does not meet any of its stopping criteria, it lowers
the coefficient β and repeats. The algorithm can terminate in three ways: (i) by finding
a policy that respects the constraints in all CMDPs in the uncertainty set; (ii) by setting a
cost bound too low, such that none of the CMDPs can satisfy the constraints; or (iii) by
setting the coefficient β below the lower bound β.

Figure 5.2 demonstrates a successful search for a safe ground policy with Algorithm 8.
Each plot shows the distribution of expected cost (according to the CMDPs inΣ) for poli-
cies computed with a certain bound ĉ i . The first three plots show how the cost bound ĉ i

changes over the iterations, and the last plot shows one of the stopping conditions of the
algorithm: when the policy computed according to ĉn respect the original constraints in
all CMDPs in Σ.

Using the coefficient lower bound β, we can limit how tight the safety constraint can
get, which ultimately allows the dynamic constraint tightening algorithm to return the
abstract policies instead of the ground policy. This can help us prevent the execution of
a ground policy that is overly conservative, which might be of interest when the abstract
policy already has a reasonable performance.

5.3.3. THE ALGORITHM
The AlwaysSafe algorithm (Algorithm 9) can be equipped with any of the policies de-
scribed in the previous section or the abstract policy πA . We name the variations of the
AlwaysSafe algorithm according to the policy used:

• AlwaysSafe-πA refers to Algorithm 9 using LP4 to compute the occupancy of each
state-action pair and Equation 5.4 to extract the policy

• AlwaysSafe-πT refers to Algorithm 9 using LP4 to compute the occupancy of each
state-action pair and Equation 5.4 or Equation 5.5 to extract the policy depending
on the test in Equation 5.6.

• AlwaysSafe-πα refers to Algorithm 9 using Algorithm 8 to compute the policy.

3Another option would be to change the test in Equation 5.6 allowing a small error (ĉ + ϵ). This would give us
an approximately safe algorithm.

5

80 5. SAFE REINFORCEMENT LEARNING DURING TRAINING

Observe that varying the parameter β on Algorithm 8 can change the behavior of
the AlwaysSafe-πα algorithm. Setting β = 0 give us the standard AlwaysSafe-πα algo-
rithm, while setting β= 1 recovers the AlwaysSafe-πA algorithm. For β ∈ (0,1), we expect
that AlwaysSafe-πα can still reach the optimal policy, however with a potentially smaller
performance regret. Notice that none of these configurations should return an unsafe
policy.

5.3.4. THEORY

We would like to show that when the AlwaysSafe algorithm is equipped with a cost-
model-irrelevant abstract CMDP M and one of the safe policies πA , πT , or πα, it has
no constraint violations with high probability, as stated in Theorem 7. In summary, the
algorithm AlwaysSafe relies on the fact that the underlying CMDP M belongs to Σ with
high probability, so it can test if the proposed ground policy is safe for all CMDPs in Σ,
and when this cannot be guaranteed, it executes πA which is guaranteed to be safe to
collect more data.

Theorem 7. Given an abstract CMDP built according to a cost-model irrelevance abstrac-
tion and a fixed δ ∈ (0,1), the algorithm AlwaysSafe equipped with policies πA , πT or πα
has no constraint violation regret with probability 1−δ.

Proof. We split the proof in three parts related to the three policies considered.

AlwaysSafe-πA . From Theorem 6 we know that

V πA
C (µ) ≤ ĉ.

This is enough to conclude that AlwaysSafe with πA does not violate the safety
constraints.

AlwaysSafe-πT . First let us define the maximum expected cost of executing the pol-
icy πG in a CMDP of the uncertainty set:

maxC = max
P ′∈Σ

V πG
C (µ,P ′).

From Equation 5.6 we must show that πT is safe in both cases.

• Case 1 (maxC ≤ ĉ): in this case the policy executed is πG . This way, we have
that the expected cost for executingπG in any of the CMDP of the uncertainty
set is smaller than maxC :

V πG
C (µ,P ′) ≤ maxC : ∀P ′ ∈Σ.

Therefore, if the true CMDP is in the uncertainty set, then the expected cost
of the policy πG is less or equal to the cost bound:

P ∈Σ=⇒V πG
C (µ) ≤ maxC ≤ ĉ, (5.7)

5.4. EMPIRICAL RESULTS

5

81

where the last inequality comes from the condition of this case. By construc-
tion, the transition function of the true CMDP belongs to the uncertainty
set Σ with high probability 1−δ:

Pr
(
P ∈Σ

)
≥ 1−δ. (5.8)

Therefore, we have from Equation 5.7 and Equation 5.8 that:

Pr
(
V πG

C (µ) ≤ ĉ
)
≥ Pr

(
P ∈Σ

)
≥ 1−δ.

• Case 2 (maxC > ĉ): in this case the policy executed is πA , which is safe (The-
orem 6).

AlwaysSafe-πα. This proof is similar to the proof for AlwaysSafe-πT . In this case, the
only difference is that πG might be computed with a bound βĉ that is lower than
the original bound ĉ.

Theorem 6 is enough to show that AlwaysSafe withπA will not violate the constraints.
By definition the transition of the true CMDP belongs to the uncertainty setΣwith prob-
ability 1−δ. Since the expected cost of the policies πT and πα is less or equal to ĉ in all
CMDPs in Σ, these policies are safe with probability 1−δ.

5.4. EMPIRICAL RESULTS
In this section, we empirically assess the proposed algorithms. We start by describing
the experiments methodology, baseline algorithms, parameters, and the environments
considered (Section 5.4.1). Next, we present a series of experiments focusing on differ-
ent questions regarding the algorithms considered, including if they are able to ensure
safety during the learning phase (Section 5.4.2), how the safety guarantees affect the per-
formance of the algorithms (Section 5.4.3), which problems can lead to a sub-optimal
policy (Section 5.4.4), and what is the impact of safety on the exploration capabilities
(Section 5.4.5). The code to reproduce the experiments is available online4.

5.4.1. SETUP
We evaluate the variations of the AlwaysSafe algorithm equipped with different policies
from Section 5.3 (πA ,πT andπα withα= 0.5), plus an instance usingπT with an adjusted
cost bound 0.9ĉ. We use the following algorithms as baselines:

• OptCMDP: Algorithm 6.

• AbsOptCMDP-πG : Algorithm 7.

4https://github.com/AlgTUDelft/AlwaysSafe

https://github.com/AlgTUDelft/AlwaysSafe

5

82 5. SAFE REINFORCEMENT LEARNING DURING TRAINING

• MLE CMDP with Bonus: a model-based reinforcement learning algorithm that
uses LP1 based on the maximum likelihood estimate of the CMDP and the opti-
mistic estimate of the reward function as in OptCMDP. In particular, this method is
computationally cheaper than OptCMDP since it does not handle the uncertainty
of the transition function.

• Q-Learning: the classic off-policy model-free algorithm with a linearly decaying
exploration rate (Watkins, 1989).

• Q-Learning Optimistic: Q-Learning with an optimistic initialization of the state-
action values.

Although Q-Learning and Q-Learning Optimistic are not designed for CMDPs, they
can give us some perspective with respect to the performance of the algorithms.

We use the following confidence intervals in the experiments:

eP (s, a, s′) = 1

max{η(s, a),1}
+

√
Var(P̂ (s′ | s, a))

max{η(s, a),1}
,

eR (s, a) = R⊤−R⊥
max{η(s, a),1}

, and

eC (s, a) = C⊤−C⊥
max{η(s, a),1}

,

where η(s, a) is the number of times action a ∈A has been executed in the state s ∈ S, R⊥
and R⊤ (C⊥ and C⊤) are the minimum and maximum value of the reward (cost) function,
and Var(x) = x ∗ (1− x). We removed the subscript δ since these bounds are tighter than
the theoretical bounds and do not depend on δ. Since the reward and cost functions
in these environments are not in the interval [0,1], we normalize the confidence inter-
vals according to their spans. We also make them tighter to handle the large magnitude
difference in the rewards of the cliff environment and taxi environment.

Finally, we follow a doubling epoch schedule (Jin et al., 2020a), where a new policy is
computed only when one of the state-action counters doubles. To reduce the number of
constraints and state variables in the linear programs we also assume the successors of
each state is known:

suc(s) = {
s′ ∈ S | ∃a ∈A : P (s′ | s, a) > 0

}
, ∀s ∈ S.

Next, we describe the five environments used in the experiments to showcase different
features of the AlwaysSafe algorithm.

SIMPLE CMDP
The simple CMDP, depicted in Figure 5.3 (left), was adapted from a problem proposed
by Zheng and Ratliff (2020), it has 3 states (S = N3) and 2 actions: stay in the current
state, which does not incur any cost or reward; and move to the next state, which incurs
a cost of 1 and a reward equals to the current state index. The agent has to balance
between the actions move and stay to get the maximum reward without violating the

5.4. EMPIRICAL RESULTS

5

83

s1

s2 s3

r=1
c=1

c=1
r=2

r=3
c=1

r=0
c=0

r=0
c=0

r=0
c=0

s

c=0

c=1

Figure 5.3: A CMDP with 3 states (left) and the corresponding abstract CMDP built with a cost-model-irrelevant
abstraction (right).

safety constraints. We set ĉ = 3, H = 6, K = 100, and the abstraction ignores the state
since the cost depends only on the action, see Figure 5.3 (right). In this way, the cost-
model-irrelevance abstraction maps all states to a single state. Similar to Example 6, in
this environment, the reward depends on the ground state, so the optimal policy cannot
be computed in the abstract state space. Therefore, this environment serves to check
whether the algorithms based on the safety abstraction can compute an optimal policy.

FACTORED CMDP
The factored CMDP from Figure 5.1 with p =0.9. We set ĉ =0.1, H = 2, K = 5000. We
use the state abstraction that ignores the state variable y , see Figure 5.1 (right). This is a
particularly challenging environment from a safety perspective because an optimistic al-
gorithm may underestimate the value of p, as discussed in Example 5, leading to unsafe
behaviors.

CLIFF WALKING

The cliff walking problem is a 4×6 grid-world where the agent must get from a starting
location (S) to a goal location (G) without falling off a cliff (Sutton and Barto, 2018, Ex-
ample 6.6). We used the augmented version with a cost for walking close to the cliff (Lee
et al., 2017), as shown in Figure 5.4 (left). The agent gets a reward of -1 for each move-
ment. If the agent falls from the cliff (stepping in one of the grey areas), it is sent back to
state S and gets a reward of -100. The agent gets a cost of 2 for walking in cells adjacent
to the cliff (second row) and a cost of 1 for walking 2 cells away from the cliff (third row).
We set ĉ = 2, H = 15, K = 5000, and we do not ignore any variables. In this example, the
cost function depends on both variables, so we need to use an identity function to de-
fine the abstraction. We set ĉ = 2 and thereby ensure that an optimal policy is stochastic,
as it needs to randomize between two longer paths. Figure 5.4 (right) shows the optimal
paths (dashed lines) for a cost bound ĉ = 2. The agent needs to randomize between these
two paths, taking each path 50% of the time, which gives an expected cost of 2 and an
expected value of 10.

5

84 5. SAFE REINFORCEMENT LEARNING DURING TRAINING

c=2

S G

r=-100

c=2 c=2 c=2

c=1 c=1 c=1 c=1

c=2

S G

r=-100

c=2 c=2 c=2

c=1 c=1 c=1 c=1

Figure 5.4: Cliff walking.

Figure 5.5: Taxi with fuel.

TAXI

The taxi with fuel problem (Dietterich, 1998) has 5 features describing a taxi’s location, a
passenger’s location and destination, and the amount of fuel. It has 7 actions, including:
move north, south, west, or east; pick up the passenger; drop off the passenger; and
refuel. We considered a small version with a 2×2 grid and fuel capacity of 5, as shown
in Figure 5.5 (left). We augment the problem by giving a cost signal of 1 if the taxi runs
out of fuel and 0 otherwise. We set ĉ = 0, H = 6, K = 5000, and ignore the passenger’s
location and destination. Setting ĉ = 0 ensures the taxi never runs out of fuel.

COST CHAIN

The cost chain environment is inspired by the chain environment (Osband et al., 2016),
commonly used to evaluate the exploration capability of RL algorithms, where the agent
can collect a small reward in the first state and a large reward in the last state. The re-
ward and cost structure of this environment is also similar to the factored CMDP. It has
2 features (x and y) where x ∈ [1,n] and y ∈ [1,2]. The agent has three actions: a, b, and
reset.

In this environment, when the agent takes action A in the state (x, y), we observe the
following dynamics. If x = n−1, the agent gets a reward of 1 and moves to the absorbing
state (n, y). If A = r eset , the agent moves to state (0, y), with no cost and a reward of
1
n . For states where x is even and A ∈ { a,b } the agent receives no reward or cost and
transitions to state (x+1,0) with probability p and to state (x+1,1) with probability 1−p.
Finally, for states where the x is odd, the agent moves to state (x +1, y), receives a cost
of 1 if A = a and 0 otherwise, and receives a reward equals to 1

2n if y = 0 and A = a, or if
y = 1 and A = b, otherwise it gets no reward. We set n = 20, ĉ = 0.5, H = 21, K = 10000,
similar to the factored CMDP, a cost-model-irrelevant abstraction ignores the feature y .

5.4. EMPIRICAL RESULTS

5

85

0,0 1,0 2,0 · · · n-1,0 n,0

0,1 1,1 2,1 · · · n-1,1 n,1

a,b
p

1−
p

r eset

r =
1n

a

r = 1
2n

c = 1

b

r eset

r = 1
n

a,b,r eset
r = 1

a,b

p

1−p

r eset

r
=

1 n

a c = 1

b
r = 1

2n

r eset

r = 1
n

a,b,r eset
r = 1

Figure 5.6: The cost chain environment CMDP. Costs and rewards with value 0 are omitted as well as the
probability of deterministic transitions.

5.4.2. SAFETY EVALUATION

The first experiment aims to evaluate the safety aspects of the algorithms. Figure 5.7
shows the expected cost (left column) and expected value (right column) of the policy
in each episode on the environments simple CMDP, factored CMDP, and cliff walking.
These environments are used because they require the agent to sacrifice some return to
meet the safety requirements.

We start the analysis with the simple CMDP (top row). We can observe that the algo-
rithms OptCMDP, MLE CMDP with Bonus, and Q-Learning obtain policies with an ex-
pected value larger than the optimal constrained policy (top left). However, to do so, they
have to violate the cost constraints (top right). Although the algorithm AbsOptCMDP πG

has no safety guarantees, in this domain, it converges to the optimal policy without vio-
lating the constraints.

As expected, all instances of the AlwaysSafe algorithm respect the cost constraint.
However, only πα converges to the optimal policy, while the others converged to a sub-
optimal policy, indicating that the ground policy did not pass the safety test and the
abstract policy was used. We notice that in the first episodes, even though the confidence
interval was loose, the final ĉ was low enough to make the ground policy safe in the whole
uncertainty set. Analyzing the expected value AlwaysSafe πα uses a conservative policy.
In Section 5.4.3, we investigate how to make this algorithm less conservative.

The experiments with the factored CMDP (middle row) show that AbsOptCMDP πG

is not safe. Only AlwaysSafe-πα safely reaches the optimal performance. We can also see
that AlwaysSafe πT with 0.9ĉ changes from policy πA to policy πG after ∼ 500 episodes
but still does not reach the optimal performance, while the algorithm AlwaysSafe-πT

always executes πA . This issue is investigated further in Section 5.4.4.

We conclude this analysis with the cliff environment (bottom row). For the cliff en-
vironment, we only consider the algorithm AlwaysSafe-πA since S = S which implies

5

86 5. SAFE REINFORCEMENT LEARNING DURING TRAINING

0 20 40 60 80 100
Episode

0

1

2

3

4

5

6

E
x
p

ec
te

d
C

os
t

Simple CMDP

OptCMDP

MLE CMDP with Bonus

AbsOptCMDP-πG
AlwaysSafe-πα

AlwaysSafe-πA
AlwaysSafe-πT
AlwaysSafe-πT 0.9ĉ

Q-Learning
cost bound

0 20 40 60 80 100
Episode

2

4

6

8

10

12

E
x
p

ec
te

d
V

al
u

e

Simple CMDP

optimal return

0 200 400 600 800 1000
Episode

0.00

0.05

0.10

0.15

0.20

0.25

0.30

E
x
p

ec
te

d
C

os
t

Factored CMDP

OptCMDP

MLE CMDP with Bonus

AbsOptCMDP-πG
AlwaysSafe-πα

AlwaysSafe-πA
AlwaysSafe-πT
AlwaysSafe-πT 0.9ĉ

Q-Learning

cost bound

0 200 400 600 800 1000
Episode

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

0.300

E
x
p

ec
te

d
V

al
u

e

Factored CMDP

optimal return

0 1000 2000 3000 4000 5000
Episode

0

1

2

3

4

5

6

E
x
p

ec
te

d
C

os
t

Cliff Walking

OptCMDP

MLE CMDP with Bonus

AlwaysSafe-πA
Q-Learning

cost bound

0 1000 2000 3000 4000 5000
Episode

−20

−18

−16

−14

−12

−10

−8

−6

E
x
p

ec
te

d
V

al
u

e

Cliff Walking

optimal return

Figure 5.7: Results for the simple CMDP (top), factored CMDP (middle), and cliff environment (bottom), all
averaged over 100 runs with a 95% confidence interval. The left column shows the expected cost of the policy
executed in each episode while the right column shows the expected value of the policy. A dashed line depicts
the bound on the expected cost ĉ and a dotted line depicts the optimal expected value.

5.4. EMPIRICAL RESULTS

5

87

πG =πA , making all the algorithms equipped with the abstract safety dynamics virtually
the same. We observe, to no surprise, that the AlwaysSafe-πA algorithm is able to always
execute policies with an expected cost lower than the given bound. The OptCMDP and
MLE CMDP with Bonus algorithms, on the other hand, violate the cost constraints for
hundreds of episodes. Analyzing the expected value of the policies executed (bottom
right), we have an indication that, in the cliff environment, the constraints on the ex-
pected cost are actually beneficial for the AlwaysSafe-πA algorithm that accumulates a
smaller regret in terms of performance as well. Section 5.4.4 provides more intuition on
this aspect.

5.4.3. DYNAMIC CONSTRAINT TIGHTENING EVALUATION

Analyzing the expected value on the simple CMDP at Figure 5.7 (top right), we may no-
tice that in the early episodes, the algorithm AlwaysSafe πA shows a higher expected
value than the algorithm AlwaysSafe-πα. This raises the question if it is possible to re-
duce the performance regret of the AlwaysSafe-πα algorithm by executing the abstract
policy in the early episodes. In other words, can we avoid policies too conservative in the
early episodes, when the agent only finds a ground policy that satisfies the safety con-
straints using a very low β. To examine this hypothesis, we evaluate the AlwaysSafe-πα
algorithm varying the coefficient lower bound β.

We use the same configurations of the simple CMDP described before, but we let
K = 300 to observe the performance of the variants that take more time to converge. We
consider β ∈ {0,0.1, · · · ,1}∪ {0.91,0.92 · · · ,0.99}.

Figure 5.8 (top) shows the value of the policies executed in the first 300 episodes. On
the left, we notice that, as expected, all variations have an expected cost lower than the
given safety threshold, demonstrating that the value of β does not affect the safety of the
algorithm. On the right, we observe significant differences in terms of expected value
with respect to β. In particular, when β is closer to 0, the agent might deploy extremely
conservative policies in the early episodes. We also notice that when β is close to 1, the
performance is closer to the abstract policy (when β= 1) during more episodes, and the
agent needs significantly more time to find the optimal policy. For instance, for β= 0.99
the agent only starts approaching the optimal performance after 100 episodes.

On Figure 5.8 (bottom), we see the accumulative performance regret over the 300
episodes on the left and after 300 episodes on the right. We can observe that, in the early
episodes, the agent with high values forβ accumulate less regret than the agents with low
β. However, over time we notice that agents with β too high can accumulate more regret
than the original algorithm (β = 0), in particular when β = 0.99. Therefore, setting β

too high can make the agent use the abstract policy for too many episodes, which might
prevent the exploration of specific ground states leading to a larger performance regret.

Figure 5.8 (bottom right) shows that the values that accumulate less regret are close
to β= 0.9, indicating that a balanced β is ideal. It also shows that the algorithm is robust
to the choice of β, obtaining almost the smallest regret with values between 0.7 and 0.9.

Figure 5.9 shows the results of the same experiment on the factored CMDP environ-
ment. The plots follows the same structure from Figure 5.8. We notice that, in this exam-
ple, the low values of β perform better than values closer to 1. This can be explained by
the lower difference in performance between the ground policy and abstract policy, as

5

88 5. SAFE REINFORCEMENT LEARNING DURING TRAINING

100 101 102

Episode

0.0

0.5

1.0

1.5

2.0

2.5

3.0

E
x
p

ec
te

d
C

os
t

Simple CMDP

cost bound

100 101 102

Episode

1

2

3

4

5

6

7

E
x
p

ec
te

d
V

al
u

e

Simple CMDP

optimal return

0.0

0.2

0.4

0.6

0.8

1.0
β

0.0

0.2

0.4

0.6

0.8

1.0
β

0 50 100 150 200 250 300
Episode

0

50

100

150

200

C
u

m
u

la
ti

ve
P

er
fo

rm
an

ce
R

eg
re

t

Simple CMDP

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

0.
91

0.
92

0.
93

0.
94

0.
95

0.
96

0.
97

0.
98

0.
99 1.

0

β

67.2

0.0

42.6

210.5

C
u

m
u

la
ti

ve
P

er
fo

rm
an

ce
R

eg
re

t

Simple CMDP — Episode=300

0.0

0.2

0.4

0.6

0.8

1.0
β

Figure 5.8: AlwaysSafe-πα on the simple CMDP environment varying the coefficient lower bound β, averaged
over 100 runs: (top left) the episodic expected cost, (top right) the episodic expected value, (bottom left) the
cumulative performance regret over episodes and (bottom right) the accumulated performance regret after
300 episodes (with a 95% confidence interval). A dashed line depicts the bound on the expected cost ĉ and a
dotted line depicts the optimal expected value.

5.4. EMPIRICAL RESULTS

5

89

100 101 102 103 104

Episode

0.00

0.02

0.04

0.06

0.08

0.10

E
x
p

ec
te

d
C

os
t

Factored CMDP

cost bound

100 101 102 103 104

Episode

0.10

0.12

0.14

0.16

0.18

0.20

E
x
p

ec
te

d
V

al
u

e

Factored CMDP

optimal return

0.0

0.2

0.4

0.6

0.8

1.0
β

0.0

0.2

0.4

0.6

0.8

1.0
β

0 2000 4000 6000 8000 10000
Episode

0

25

50

75

100

125

150

175

200

C
u

m
u

la
ti

ve
P

er
fo

rm
an

ce
R

eg
re

t

Factored CMDP

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

0.
91

0.
92

0.
93

0.
94

0.
95

0.
96

0.
97

0.
98

0.
99 1.

0

β

0.0

12.5

200.8

C
u

m
u

la
ti

ve
P

er
fo

rm
an

ce
R

eg
re

t

Episode=10000

0.0

0.2

0.4

0.6

0.8

1.0
β

Figure 5.9: AlwaysSafe-πα on the factored CMDP environment varying the coefficient lower bound β over
10000 episodes, averaged over 100 runs: (top left) the episodic expected cost, (top right) the episodic expected
value, (bottom left) the cumulative performance regret and (bottom right) the accumulated performance re-
gret (with a 95% confidence interval). A dashed line depicts the bound on the expected cost ĉ and a dotted line
depicts the optimal expected value.

5

90 5. SAFE REINFORCEMENT LEARNING DURING TRAINING

0 1000 2000 3000 4000 5000
Episode

0.0

0.2

0.4

0.6

0.8

1.0

E
x
p

ec
te

d
C

os
t

Taxi

OptCMDP

MLE CMDP with Bonus

AbsOptCMDP-πG
AlwaysSafe-πA
Q-Learning

cost bound

0 1000 2000 3000 4000 5000
Episode

−40

−30

−20

−10

0

10

E
x
p

ec
te

d
V

al
u

e

Taxi

optimal return

Figure 5.10: Results for the taxi with fuel environment averaged over 100 runs with a 95% confidence interval.
The left column shows the expected cost of the policy executed in each episode while the right column shows
the expected value of the policy. A dashed line depicts the bound on the expected cost ĉ and a dotted line
depicts the optimal expected value.

observed on Figure 5.7 (middle right). Nevertheless, the range of β that has better per-
formance is also wide, varying from 0 and 0.8, which indicates again that the algorithm
is robust to the choice of β.

Overall, finding a principled way to decide whether or not to stop the dynamic con-
straint tightening and return a conservative policy is still an open question.

5.4.4. TIGHT SAFETY BOUNDS

Figure 5.10 shows the results on the taxi environment. In this environment, the cost
bound is set to 0. Therefore, the dynamic constraint tightening strategy cannot reduce
the cost bound ĉ without making the problem infeasible. Therefore, we only consider
the algorithms AlwaysSafe-πA and AbsOptCMDP-πG .

Similar to the results on simple CMDP and factored CMDP, the AlwaysSafe algorithm
equipped with the abstract policy πA is able to respect the safety constraints but is not
able to find the optimal policy. The remaining algorithms tested are able to solve the task,
however, they violate the cost constraints in early episodes. In particular, we notice that
AlwaysSafe-πG can learn how to remain safe faster than the remaining algorithms; con-
sequently, AlwaysSafe-πG also finds policies with high performance faster. This shows
that when the safety constraints are aligned with the reward function, the performance
of safer agents also improves.

5.4.5. EXPLORATION EFFICIENCY

In this last experiment, we consider how the safe behavior of the agent impacts its explo-
ration efficiency, using the cost chain environment with horizon 20. Figure 5.11 shows
the results.

First, we notice that both Q-Learning and Optimistic Q-Learning are not able to find
the optimal policy for this environment, which shows that this task requires a reason-
able exploration strategy. Otherwise, the remaining algorithms have similar behavior as
in the factored CMDP environment, where OptCMDP and MLE CMDP with Bonus can

5.5. RELATED WORK

5

91

0 2000 4000 6000 8000 10000
Episode

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

E
x
p

ec
te

d
C

os
t

Chain 20
OptCMDP

MLE CMDP with Bonus

AlwaysSafe-πα
Q-Learning

Q-Learning Optimistic

cost bound

0 2000 4000 6000 8000 10000
Episode

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

E
x
p

ec
te

d
V

al
u

e

Chain 20

optimal return

Figure 5.11: Results for the cost chain environment averaged over 100 runs with a 95% confidence interval. The
left column shows the expected cost of the policy executed in each episode while the right column shows the
expected value of the policy. A dashed line depicts the bound on the expected cost ĉ and a dotted line depicts
the optimal expected value.

find the optimal policy but violate the cost constraints in the early episodes, while the
AlwaysSafe-πα can find the optimal policy without violating the safety constraints. This
lets us conclude that AlwaysSafe-πα is still able to explore the environment optimisti-
cally with respect to the reward.

5.4.6. RESULTS DISCUSSION
Following Ray et al. (2019), we may conclude that the algorithm AlwaysSafe equipped
with the safe policies πA , πT , πα or πT with 0.9ĉ dominates the algorithms OptCMDP
and AbsOptCMDP πG since the former does not violate the constraints, while the latter
does. Then, AlwaysSafe-πα dominates AlwaysSafe-πA , AlwaysSafe-πT and AlwaysSafe-
πT with 0.9ĉ since in general it achieves higher performance. Nevertheless, these results
come with the requirement that the abstract model relevant for safety is known. We
believe that in cases where this model is only partially known, these algorithms would
still be useful to make the most of the knowledge available.

In general, we notice that, on the one hand, the optimistic algorithms OptCMDP and
AbsOptCMDP πG eventually approach the safety bound, but might use unsafe policies
during this process, which is a clear consequence of their optimism with respect to the
transition and cost function. On the other hand, the AlwaysSafe algorithm equipped
with safe policies sacrifices performance to ensure safety. However, when the cost func-
tion is well aligned with the reward function, it can also have a smaller performance
regret.

5.5. RELATED WORK
As we mentioned in Chapter 1, there are two popular directions in safe reinforcement
learning (García and Fernández, 2015): (i) shaping the optimization criterion towards
risk sensitivity (Chow et al., 2018a) and (i i) changing the exploration process by, for in-
stance, assuming the existence of a safe policy (Zheng and Ratliff, 2020). The method
proposed in this chapter is at the intersection of these directions since we employ exter-

5

92 5. SAFE REINFORCEMENT LEARNING DURING TRAINING

nal knowledge to modify the exploration process using a different optimization criterion.
Zheng and Ratliff (2020) adapt the UCRL2 algorithm to CMDPs and assume that the

full transition model of the MDP is known and the agent has access to a safe (baseline)
policy. In contrast, we only require an abstraction of the transition model that is relevant
for the cost function. Recently, HasanzadeZonuzy et al. (2021) showed that the sam-
ple complexity of learning in CMDPs increases only logarithmically in comparison to
unconstrained problems. However, their probably-approximately-correct (PAC) scheme
does not provide any safety guarantees during the learning phase.

Furthermore, RL algorithms that provide guarantees of not violating the constraints
during the learning phase include methods that model the environment dynamics using
Gaussian processes (Berkenkamp et al., 2017; Turchetta et al., 2019; Wachi and Sui, 2020;
Wachi et al., 2018), design Lyapunov functions to guarantee the global constraints (Chow
et al., 2018b) or use analogies (Roderick et al., 2021). In general, these methods assume
an initial safe policy to begin exploring, allowing the agents to slowly expand the set of
known safe policies/states.

For problems with high-dimensional input spaces, different policy search algorithms
have been proposed that provide certain (though not hard) guarantees of not violating
the constraints (Achiam et al., 2017; Tessler et al., 2019; Yang et al., 2020b) or find safe
policies only at the end of the training process (Ray et al., 2019). In this setting, the safety
constraint has also been generalized to consider the tail of the distribution of accumu-
lated expected costs instead of the mean (Yang et al., 2021).

FMDPs have been explored in different RL settings, developing algorithms with near-
optimal regret bounds in FMDPs without constraints (Osband and Van Roy, 2014) and
with constraints (Chen et al., 2021b), improving sample efficiency (Chakraborty and
Stone, 2011; Diuk et al., 2009; Strehl et al., 2007), and tackling the off-policy policy eval-
uation problem (Hallak et al., 2015), In the safety literature, FMDPs have been used to
reduce the sample complexity of batch RL algorithms with safety guarantees with re-
spect to the performance of a baseline policy (see Chapter 3) and to allow an agent to
query a supervisor about the features of the FMDP to avoid side effects (Zhang et al.,
2018).

Reachability constraints enforce policies to avoid catastrophic states. Fatemi et al.
(2019) avoid such states with high probability, and Taleghan and Dietterich (2018) look
into deterministic policies that are easier to perceive than the usual randomized poli-
cies. Similarly, works from the formal methods community use reachability constraints
and their extension, temporal logic constraints, to argue about safety during exploration
using prior knowledge about the transition model (Alshiekh et al., 2018; Hasanbeig et al.,
2020; Jansen et al., 2020; Junges et al., 2016). Finally, a control-theoretic simplex architec-
ture has been employed to switch between safe and high-performance controllers (Phan
et al., 2020).

5.6. CONCLUSIONS
This chapter investigates settings where safety-relevant dynamics are given. We pro-
posed the AlwaysSafe algorithm that can be optimistic with respect to the reward while
ensuring safety during exploration.

In particular, we used an abstract model of the safety-relevant dynamics to compute

5.6. CONCLUSIONS

5

93

an abstract policy that is always safe and a ground policy that can achieve high perfor-
mance. We showed how to switch between these two policies to build an algorithm that
is safe and eventually converges to the optimal policy. This method not only enforces
the agent to always act safely but can also prune under-performing actions, improving
the training efficiency when the cost function is aligned with the reward function.

Further studies might investigate alternative methods to devise the abstractions of
the safety dynamics, for instance, using core states (Shariff and Szepesvári, 2020); how
the AlwaysSafe copes with an approximation of the abstract CMDP (Abel et al., 2016);
and algorithms that can aggregate states online (Ortner, 2013) without violating the con-
straints.

In summary, the proposed algorithm is always safe during the learning process, even-
tually reaches the optimal policy, and decouples exploration from safety issues in RL.

6
CONCLUDING REMARKS

Before closing this thesis, we review its main contributions, reflect on the results ob-
tained and consider possible directions for further research.

6.1. CONTRIBUTIONS
As mentioned in Chapter 1, there are multiple ways to make RL algorithms more reliable.
We considered an offline setting, where the goal is to provide guarantees on the perfor-
mance of the policy computed. In particular, in Chapter 3 we explore settings where the
behavior policy is known, while in Chapter 4 we explore settings where only the set of
trajectories is available. In Chapter 5 we took a step towards safe exploration, consider-
ing situations where prior knowledge about the safety dynamics of the environment is
available, but not about the entire task of the agent.

Overall, RL only assumes the environment is an MDP, which is a weaker assumption
than the assumption in probabilistic planning that the full model of the environment is
provided. However, to provide safety guarantees, we must make stronger assumptions,
putting SRL closer to probabilistic planning. Keeping this in mind, we may analyze the
contributions in this thesis according to how we change the strength of such assump-
tions. On the one hand, we investigated settings with stronger assumptions to make
problems more tractable. On the other hand, we investigated problems with weaker as-
sumptions to relax their constraints and make the solution more general. We analyze
our contributions on this spectrum.

6.1.1. INCREASING TRACTABILITY
Addressing Research Question 1, we observed multiple benefits of narrowing the scope
of the problem by relying on some domain knowledge. Focusing on FMDPs allowed us
to reduce the sample complexity of offline RL algorithms, in particular of SPI algorithms,
and to provide some generalization capabilities to these algorithms (Chapter 3). Follow-
ing a similar strategy, we also developed mechanisms that allow safe exploration of the
environment using a description of the safety dynamics (Chapter 5).

95

6

96 6. CONCLUDING REMARKS

Considering FMDPs, we managed to reduce significantly the sample complexity of
SPI algorithms, which addresses Research Question 2. We investigated two classes that
make different assumptions regarding prior knowledge about the problem. In the first,
the structure of the problem is provided, so the agent only needs to estimate the pa-
rameters of the local transition components representing the DBN. In the second, only
a bound on the number of parents each state variable is given, so the agent needs to es-
timate the structure of the problem. When such assumptions are met, these algorithms
can compute policies with higher performance than algorithms that handle unrestricted
MDPs when given the same dataset.

A compelling benefit of focusing on a restricted class of problems, such as FMDPs, is
that the resulting SPI algorithms gain some generalization capabilities, which addresses
our Research Question 3. These algorithms can make inferences about unvisited states
by combining samples from similar states. This can be particularly helpful when the data
available have only partial coverage of the problem. While SPI algorithms designed for
unrestricted classes of MDPs become very conservative and always rely on the behavior
policy, we showed that by exploiting the factored structure of the problem, the agent
might infer the dynamics of states that are not present in the dataset allowing it to choose
actions that had not been executed during the data collection phase.

Incorporating domain knowledge also increases transparency and hence the user’s
trust in the system. To address Research Question 5, we considered safe exploration in
CMDPs, where the user provides the safety dynamics of the environment (Chapter 5).
Besides allowing the agent to learn to optimize its main task without violating the safety
constraints, this provides assurance to the user that the agent will not spend resources to
learn about information already known. Ultimately, this approach also showed a regret
reduction in terms of performance when the safety is aligned which the agent’s task,
addressing Research Question 6.

Constraints are another way of exploiting an expert’s prior knowledge. It allows prac-
titioners to directly specify the behaviors expected from the agent, avoiding the issues
with reward engineering (Roy et al., 2021). This increases the user’s autonomy, allow-
ing it to prevent some behaviors of the RL agent. We studied constraints on the total
expected cost; nevertheless, other types of constraints could also be considered, as dis-
cussed later.

As a final note about narrowing the class of problems, we would like to point out that
investigating other types of structure may allow us to incorporate more domain knowl-
edge in the agent’s learning process. For example, the exploitation of Gaussian (Turchetta
et al., 2016) and linear (Jin et al., 2020c) dynamics have a large potential to expand the
reach of online and offline SRL agents.

6.1.2. STRIVING FOR SIMPLICITY

Moving towards the opposite direction from the previous section, we investigated how
to relax some of the SPI algorithms’ assumptions to make them more general.

In Chapter 3, we first proposed a factored SPI algorithm that assumes the structure
of the problem is known, meaning we know the dependencies between the features of
the problem. If that is not known beforehand, we show that it is also possible to learn
the structure of an FMDP, in which case we make the weaker assumption that the user

6.2. REFLECTIONS

6

97

provides a bound on the number of state variables that can influence another state vari-
able.

Addressing Research Question 4, we showed in Chapter 4 that offline RL algorithms
can have improvement guarantees even when the behavior policy is unknown. This
revealed the possibility of developing reliable offline RL algorithms with minimum re-
quirements, which is essential to make these algorithms more accessible. Previously, if
we had collected some data with a particular policy but were unable to reconstruct this
policy, we would not have any guarantees regarding the performance of the policy re-
turned by an offline RL algorithm. The approach we proposed ensures that, even in this
situation, the practitioner could still recover the behavior policy and use SPI algorithms
with improvement guarantees.

6.1.3. ON THE GAP BETWEEN THE LAB AND THE REAL WORLD

Our motivation has been to increase the reliability of RL agents, which should facilitate
their deployment in real world scenarios. Unfortunately, we did not perform experi-
ments directly on real world applications since we may require an excessive number of
trials to have statistically significant results for safe policy improvement methods. Nev-
ertheless, some applications have high fidelity simulators that can be used to test these
methods. We mentioned an example of such a case study in Section 3.5, where SPI algo-
rithms were tested on a steel melting plant simulation (Kosiorek, 2020).

This case study also showed the benefits of incorporating safety constraints explic-
itly. In the steel plant, some actions certainly have bad outcomes, such as launching
two ladles from the same group simultaneously, since they might arrive at the caster at
similar times, causing unnecessary delays. Preventing the agent from using such actions
made the algorithm’s final policies more reliable overall. This is an example of the need
for means to define the safety constraints explicitly, which we studied in Chapter 5.

6.2. REFLECTIONS
While safety and reliability were the main focus of this thesis, we also touched on other
issues preventing the deployment of reinforcement learning to real world tasks, such as
data efficiency and learning with a fixed batch of historical data. Nevertheless, we must
recall that multiple other challenges still require attention, such as partial observability,
explainability and others (Figure 1.1).

In the offline setting, we evaluated different ways to improve sample efficiency. This
is important considering the amount of data available in many applications is limited.
We developed algorithms that, by exploiting the factored structure of the problem, re-
quire fewer data to compute improved policies. This approach also provides some gen-
eralization capabilities, which helps offline agents handle cases where the data only pro-
vides partial support over the state-action space. Finally, we investigated the setting
where the behavior policy on which these algorithms rely is not available. We found
that using an estimate of the behavior policy can be a reasonable solution.

In the online setting, we considered how to prevent constraint violations during the
learning process. We investigated settings where the user provides prior knowledge of
the safety dynamics. While we focused on constraining the expected safety cost, we be-

6

98 6. CONCLUDING REMARKS

lieve similar approaches can be developed for problems with hard constraints or with
chance constraints.

6.3. DIRECTIONS FOR FUTURE WORK
In this section, we discuss potential future work. We start by revisiting our two core prob-
lems (Figure 1.1), as well as their interplay. We also present some alternative ways to
provide safety to reinforcement learning agents and reflections about the future of RL.

6.3.1. REVISITING THE OFFLINE REINFORCEMENT LEARNING

Since the beginning of this work, offline RL has gained considerable attention due to its
use of historical data in the hope of following the trends of supervised learning (Levine
et al., 2020). Nevertheless, there are still numerous open challenges that require further
research.

Closer to this thesis, we may mention that there are still multiple ways of exploiting
the factored structure of the problem. First, we observe that we could also easily exploit
the factored structure for the soft SPIBB algorithm (Nadjahi et al., 2019), which was only
used in Chapter 4. Another intriguing question is whether we can exploit the factored
structure of the problem when the baseline policy is unknown. This is challenging since
the behavior policy might not have a factored structure, even if used in an FMDP. Nev-
ertheless, if we can assume that the behavior policy has some structure, for instance, it
is defined by a decision tree with a limited depth or a limited number of nodes, we could
also estimate the policy efficiently.

We may also exploit other types of structures to reduce the problem class. Some ex-
amples include: ignoring exogenous variables (Dietterich et al., 2018), using influence
abstraction to reduce the size of the problem (Oliehoek et al., 2012), or separating pri-
vate and environmental variables (Liu et al., 2021a). These approaches have the poten-
tial to present benefits similar to exploiting the factored structure, meaning they might
improve the data efficiency of the algorithms and may help with generalization.

An important question to be explored in the offline setting is the source of the histor-
ical data. In some cases where the system designer envisions the future use of offline RL
algorithms, collecting the data with good coverage of the problem can be critical to find
high-performing policies later on. In this case, computing policies to effectively explore
the environment would be ideal (Jin et al., 2020b; Wang et al., 2020).

Although the pure offline RL setting has received close attention over the last years,
recent results show that this problem might be considerably more complex than its on-
line counterpart (Xiao et al., 2021a; Zanette, 2021). This indicates that using a single
batch of past trajectories has limited potential. Therefore, the development of inter-
mediate algorithms that can interleave between data collection and policy optimization
is a promising direction for future research, following the growing batch methodology
(Lange et al., 2012; Riedmiller et al., 2021).

Revisiting the setting where a baseline policy is available but the agent can still inter-
act with the environment, the reliability question would be how to minimize the regret
with respect to the baseline policy (Dey et al., 2021; Pirotta et al., 2013). An interest-
ing compromise would be to compute a policy with maximum entropy while ensuring a

6.3. DIRECTIONS FOR FUTURE WORK

6

99

minimum performance (Savas et al., 2018). This would create a new trade-off between
reliability and exploration. One potential solution for this problem is to use a set of
policies that allows the agent to collect diverse trajectories during exploration (Ghasemi
et al., 2021; Kumar et al., 2020). In this case, constraining each policy to guarantee a
minimum performance could make the data collection more reliable.

6.3.2. NEW CONSTRAINTS FOR REINFORCEMENT LEARNING

To take safety into account more explicitly, we considered the constraints with respect to
the expected accumulated safety cost, in other words, a soft budget constraint. However,
constrained reinforcement learning encompasses an extensive set of problems stem-
ming from its diverse types of constraints (Liu et al., 2021b). Therefore, finding ways
to learn while satisfying other types of constraints would expand the reach of safe RL.
For instance, considering a similar setting with instantaneous hard constraints, when
the safety cost in each time step is bounded .

Section 2.2 mentioned the descriptive power of planning tools that allow experts to
specify their problems, such as using accessible and intuitive languages (Sanner, 2010).
We may use it to define the abstraction of the safety dynamics as a partial description
of the problem, where we only have access to a subset of the CPTs of the DBN. In this
scenario, it would also be interesting to learn the remaining relational description of the
problem (Ng and Petrick, 2019).

In Chapter 5, we proposed an RL method that computes a policy in the dual space
using a linear program. While solving a linear program is computationally efficient, the
state space might be too large even to instantiate the linear program, which would render
the proposed algorithm ineffective. Nevertheless, in the literature, we can find multiple
strategies that could improve the scalability of this method: exploring the structure of
the problem further using an approximate linear programming approach can reduce
the size of LP (Lee et al., 2017; Poupart et al., 2015), restricting the computational effort
to more relevant parts of the environment using online algorithms (Brázdil et al., 2020;
Rostov and Kaisers, 2021), or generating constraint or variables incrementally to avoid
having to instantiate the whole problem at once (Hansen and Bowman, 2020; Walraven
and Spaan, 2018).

We can also consider other types of constraints. When some demonstrations from a
teacher are available, it could be interesting to investigate how to ensure the new policy
induces a state occupancy close to the demonstrations while guaranteeing a minimum
performance (Wang et al., 2021). Instead of bounding the expected cost, one might pre-
fer to bound the probability of reaching an accumulated cost higher than the given bud-
get in a trajectory (Moreira et al., 2021), or, taking a more general perspective, bounding
the visitation density of specific states (Qin et al., 2021). Finally, integrating constraints
in the offline RL setting could be attractive since it considers constraints more explicitly
while allowing us to use offline data (Le et al., 2019). A natural direction for this idea
would be the constrained safe policy improvement problem, which is already getting
some attention (Satija et al., 2021).

6

100 6. CONCLUDING REMARKS

6.3.3. ALTERNATIVE SOURCES OF SAFETY GUARANTEES
In this thesis, we often considered some restricted class of problems which allowed us
to make strong statements regarding the safety of the proposed algorithms. Naturally, if
these assumptions are not met, such statements might become invalid. For situations
where one cannot make such assumptions, there are other ways to deal with the safety
issues in RL. We will discuss two of them next.

Teacher Intervention. One option to ensure safety is to have a teacher responsible for
overseeing the actions chosen by the agent. This teacher could be a piece of software
(Jansen et al., 2020) or even a human (Saunders et al., 2018). The goal of the teacher
might be to provide feedback for the behavior of the agent (Thomaz and Breazeal, 2008;
Zhang et al., 2019), demonstrate the expected behavior in the form of trajectories (Osa
et al., 2018), or make corrections on the actions chosen by the agent (Dalal et al., 2018).
On the one hand, teacher interventions can also speed up the training process (Celemin
et al., 2019; Silva et al., 2020). On the one hand, they also raises new challenges, such as
how to choose what the agent should learn first (Turchetta et al., 2020), how to commu-
nicate the user’s preferences to the agent (Aytemiz et al., 2021), and how to minimize the
workload of the teacher (Andrés et al., 2018; Ha et al., 2020; Prakash et al., 2019).

Initial Safe Policy. Another option is to consider a potentially sub-optimal safe policy
is available, similar to how we can exploit the baseline policy on the offline setting (see
Chapters 3 and 4). In the online setting, the agent can collect experiences using this pol-
icy until it builds enough confidence to execute a different policy. A considerable body of
literature on safe exploration assumes such policy is available (Berkenkamp et al., 2017;
Chow et al., 2018b; Luo and Ma, 2021; Zheng and Ratliff, 2020). However, the origin of
this policy is not always clear. Considering so many methods need such safe policy to
start exploring safely, it would be interesting to investigate how to compute a policy ef-
fective for such tasks. An option is to train the RL agent in a controlled environment, for
instance, in a laboratory, to later transfer the policy obtained to the real world. In this
controlled environment, the agent may violate the safety constraints since it is possible
to reset the episode at any time.

6.4. FINAL REMARKS
As a final note, we discussed briefly in Chapter 2 how the trade-off between exploration
and exploitation in RL has been studied extensively. However, with the quick dissemina-
tion of RL, new issues and requirements emerge, such as safety, fairness, privacy, trans-
parency, security, and others. While this thesis focused on increasing the reliability of RL
algorithms, overall considering safety as a primary issue, the question of how to trade-
off between these new requirements is still essentially an open question (Pineau, 2021).
Such multiplicity of objectives indicates the importance of the multi-objective setting
given the challenges of compiling them in a single reward function.

To conclude, we expect that the deployment of RL agents will require an interdisci-
plinary approach, combining the domain knowledge from experts and RL researchers,
that together can investigate what assumptions are reasonable for the problem at hand.

A
ACRONYMS

AI Artificial Intelligence.

CMDP Constrained Markov Decision Process.
CPT Conditional Probability Table.
CRL Constrained Reinforcement Learning.

DBN Dynamic Bayesian Network.

FMDP Factored Markov Decision Process.

HCOPE High Confidence Off-Policy Evaluation.
HCPI High Confidence Policy Improvement.

KWIK Knows What It Knows.

LP Linear Program.

MDP Markov Decision Process.
MLE Maximum Likelihood Estimate.

RaMDP Reward-adjusted MDP.
RL Reinforcement Learning.

Soft-SPIBB Safe Policy Improvement with Soft Baseline Bootstrapping.
SPI Safe Policy Improvement.
SPIBB Safe Policy Improvement with Baseline Bootstrapping.
SPM Steel Plant Model.
SRL Safe Reinforcement Learning.

101

B
NOTATION

Π Set of policies.
Σ The set of probable MDPs given the past trajectories.
δ A parameter related to the confidence.
ϵ A parameter related to the precision.
η Visitation counter.
γ Discount factor.
µ Initial state distribution over states.
⊘ Symbol used by a KWIK algorithm to indicate “I do not know”.
π Policy.
πb Behavior policy.
σ Hyper-parameter of the Soft SPIBB algorithm.
ζ An admissible error for SPI algorithms.

1 Indicator function.

A Set of actions.
Anc Ancestors: the state variables with eventual influence on some state

variable(s).

B Set of states-action pairs bootstrapped by an SPIBB algorithm.

C CGk : the set of all combinations of size k of a set G.
C Cost function, indicates the cost to take an action on a given state.
ĉ Upper bound on the expected accumulated cost.

D Collection of past interactions with the environment.
d Maximum in-degree.
dom Domain of a state variable, set of values a variable can assume.

103

104 NOTATION

H Horizon.

K Number of episodes.
K A KWIK algorithm.
K Set of states-action pairs considered known by a KWIK algorithm.

M A specific MDP.
m Hyper-parameter related to number of samples required by the re-

spective learning algorithm..

P Probability simplex: set of probability distributions over a finite set.
P Transition function, describes how the environment changes.
Pa Parents: the state variables with immediate influence on some state

variable(s).

Q Domain of transition components on a factored MDP.

R Reward function, indicates how good it is to take an action on a
given state.

S Set of states.

X Set of state variables that describe the state of the environment.

BIBLIOGRAPHY

David Abel, D Ellis Hershkowitz, and Michael L Littman. Near Optimal Behavior via
Approximate State Abstraction. In Proceedings of the 33rd International Conference on
Machine Learning, pages 2915–2923. PMLR, 2016.

Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained Policy Opti-
mization. In Proceedings of the 34th International Conference on Machine Learning,
pages 22–31. PMLR, 2017.

Mohammed Alshiekh, Roderick Bloem, Rüdiger Ehlers, Bettina Könighofer, Scott
Niekum, and Ufuk Topcu. Safe Reinforcement Learning via Shielding. In Proceed-
ings of the Thirty-Second AAAI Conference on Artificial Intelligence, pages 2669–2678.
AAAI Press, 2018.

Ibrahim Althamary, Chih-Wei Huang, and Phone Lin. A Survey on Multi-Agent Rein-
forcement Learning Methods for Vehicular Networks. In 15th International Wireless
Communications & Mobile Computing Conference, pages 1154–1159. IEEE, 2019.

Eitan Altman. Constrained Markov decision processes, volume 7. CRC Press, 1999.

Susan Amin, Maziar Gomrokchi, Harsh Satija, Herke van Hoof, and Doina Pre-
cup. A Survey of Exploration Methods in Reinforcement Learning. arXiv preprint
arXiv:2109.00157, 2021.

Dario Amodei, Chris Olah, Jacob Steinhardt, Paul F Christiano, John Schulman, and Dan
Mané. Concrete Problems in AI Safety. arXiv preprint arXiv:1606.06565, 2016.

Ignasi Andrés, Leliane N de Barros, Denis D Mauá, and Thiago D Simão. When a Robot
Reaches Out for Human Help. In Advances in Artificial Intelligence - 16th Ibero-
American Conference on AI, pages 277–289. Springer, 2018.

Szilard Aradi. Survey of Deep Reinforcement Learning for Motion Planning of Au-
tonomous Vehicles. IEEE Transactions on Intelligent Transportation Systems, pages
1–20, 2020.

Brenna D Argall, Sonia Chernova, Manuela M Veloso, and Brett Browning. A survey of
robot learning from demonstration. Robotics Auton. Syst., 57(5):469–483, 2009.

Christopher G Atkeson and Juan Carlos Santamaría. A Comparison of Direct and Model-
Based Reinforcement Learning. In Proceedings of the IEEE International Conference
on Robotics and Automation, pages 3557–3564. IEEE, 1997.

105

https://arxiv.org/abs/2109.00157
https://arxiv.org/abs/2109.00157
https://arxiv.org/abs/1606.06565

106 BIBLIOGRAPHY

Peter Auer and Ronald Ortner. Logarithmic Online Regret Bounds for Undiscounted Re-
inforcement Learning. In Advances in Neural Information Processing Systems 19, pages
49–56. MIT Press, 2006.

Batu Aytemiz, Mikhail Jacob, and Sam Devlin. Acting with Style: Towards Designer-
centred Reinforcement Learning for the Video Games Industry. Reinforcement Learn-
ing for Humans, Computer, and Interaction Workshop at ACM CHI, 2021.

Bowen Baker, Ingmar Kanitscheider, Todor M Markov, Yi Wu, Glenn Powell, Bob Mc-
Grew, and Igor Mordatch. Emergent Tool Use From Multi-Agent Autocurricula. In
Proceedings of the 8th International Conference on Learning Representations, pages 1–
15. OpenReview.net, 2020.

Sumeet Batra, Zhehui Huang, Aleksei Petrenko, Tushar Kumar, Artem Molchanov, and
Gaurav Sukhatme. Decentralized Control of Quadrotor Swarms with End-to-end Deep
Reinforcement Learning. arXiv preprint arXiv:2109.07735, 2021.

Marc G Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and
Rémi Munos. Unifying Count-based Exploration and Intrinsic Motivation. In Ad-
vances in Neural Information Processing Systems 29, pages 1471–1479. Curran Asso-
ciates, Inc., 2016.

Felix Berkenkamp, Matteo Turchetta, Angela P Schoellig, and Andreas Krause. Safe
Model-based Reinforcement Learning with Stability Guarantees. In Advances in Neu-
ral Information Processing Systems 30, pages 908–918. Curran Associates, Inc., 2017.

J D Biersdorfer. How to Talk to the World Through Free Translation Apps. The New
York Times, 2021. URL https://www.nytimes.com/2021/10/20/technology/
personaltech/google-apple-translate-language.html.

Craig Boutilier, Richard Dearden, and Moisés Goldszmidt. Exploiting Structure in Pol-
icy Construction. In Proc. Int. Joint Conf. on Artificial Intelligence, pages 1104–1113.
Morgan Kaufmann, 1995.

Craig Boutilier, Thomas Dean, and Steve Hanks. Decision-Theoretic Planning: Structural
Assumptions and Computational Leverage. Journal of Artificial Intelligence Research,
11:1–94, 1999.

Ronen I Brafman and Moshe Tennenholtz. R-max — A General Polynomial Time Al-
gorithm for Near-Optimal Reinforcement Learning. Journal of Machine Learning Re-
search, 3:213–231, 2002.

Tomáš Brázdil, Krishnendu Chatterjee, Petr Novotný, and Jiří Vahala. Reinforcement
Learning of Risk-Constrained Policies in Markov Decision Processes. In Proceedings
of the Thirty-Fourth AAAI Conference on Artificial Intelligence, pages 9794–9801. AAAI
Press, 2020.

Jacob Buckman, Carles Gelada, and Marc G Bellemare. The Importance of Pessimism in
Fixed-Dataset Policy Optimization. In Proceedings of the 9th International Conference
on Learning Representations, pages 1–11. OpenReview.net, 2021.

https://arxiv.org/abs/2109.07735
https://www.nytimes.com/2021/10/20/technology/personaltech/google-apple-translate-language.html
https://www.nytimes.com/2021/10/20/technology/personaltech/google-apple-translate-language.html

BIBLIOGRAPHY 107

Thiago P Bueno, Leliane N de Barros, Denis D Mauá, and Scott Sanner. Deep Reactive
Policies for Planning in Stochastic Nonlinear Domains. In Proceedings of the Thirty-
Third AAAI Conference on Artificial Intelligence, pages 7530–7537. AAAI Press, 2019.

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by Random
Network Distillation. In Proceedings of the 7th International Conference on Learning
Representations, pages 1–13. OpenReview.net, 2019.

Miguel Calvo-Fullana, Luiz F O Chamon, and Santiago Paternain. Towards Safe Contin-
uing Task Reinforcement Learning. In American Control Conference, pages 902–908.
IEEE, 2021.

Pedro M Castro, Lige Sun, and Iiro Harjunkoski. Resource-task network formulations
for industrial demand side management of a steel plant. Industrial and Engineering
Chemistry Research, 52:13046–13058, 2013.

Carlos Celemin, Javier Ruiz-del-Solar, and Jens Kober. A fast hybrid reinforcement learn-
ing framework with human corrective feedback. Autonomous Robots, 43:1173–1186,
2019.

Doran Chakraborty and Peter Stone. Structure Learning in Ergodic Factored MDPs with-
out Knowledge of the Transition Function’s In-Degree. In Proceedings of the 28th In-
ternational Conference on Machine Learning, pages 737–744. Omnipress, 2011.

Minmin Chen, Alex Beutel, Paul Covington, Sagar Jain, Francois Belletti, and Ed H Chi.
Top-K Off-Policy Correction for a REINFORCE Recommender System. In Proceedings
of the Twelfth ACM International Conference on Web Search and Data Mining, pages
456–464. ACM, 2019.

Wuhui Chen, Xiaoyu Qiu, Ting Cai, Hong-Ning Dai, Zibin Zheng, and Yan Zhang. Deep
Reinforcement Learning for Internet of Things: A Comprehensive Survey. IEEE Com-
mun. Surv. Tutorials, 23(3):1659–1692, 2021a.

Xiaoyu Chen, Jiachen Hu, Lihong Li, and Liwei Wang. Efficient Reinforcement Learn-
ing in Factored MDPs with Application to Constrained RL. In Proceedings of the 9th
International Conference on Learning Representations, pages 1–10. OpenReview.net,
2021b.

Rohan Chitnis, Tom Silver, Beomjoon Kim, Leslie P Kaelbling, and Tomás Lozano-Perez.
CAMPs: Learning Context-Specific Abstractions for Efficient Planning in Factored
MDPs. In 4th Conference on Robot Learning, pages 64–79. PMLR, 2020.

Yinlam Chow, Mohammad Ghavamzadeh, Lucas Janson, and Marco Pavone. Risk-
Constrained Reinforcement Learning with Percentile Risk Criteria. Journal of Machine
Learning Research, 18(167):1–51, 2018a.

Yinlam Chow, Ofir Nachum, Edgar A Duéñez-Guzmán, and Mohammad Ghavamzadeh.
A Lyapunov-based Approach to Safe Reinforcement Learning. In Advances in Neural
Information Processing Systems 31, pages 8103–8112. Curran Associates, Inc., 2018b.

108 BIBLIOGRAPHY

William R Clements, Benoît-Marie Robaglia, Bastien van Delft, Reda Bahi Slaoui, and
Sébastien Toth. Estimating Risk and Uncertainty in Deep Reinforcement Learning.
arXiv preprint arXiv:1905.09638, presented at the ICML 2020 Workshop on Uncer-
tainty and Robustness in Deep Learning, 2019.

Andrew Cohen, Lei Yu, and Robert Wright. Diverse Exploration for Fast and Safe Pol-
icy Improvement. In Proceedings of the Thirty-Second AAAI Conference on Artificial
Intelligence, pages 2876–2883. AAAI Press, 2018.

Antonio Coronato, Muddasar Naeem, Giuseppe De Pietro, and Giovanni Paragliola. Re-
inforcement learning for intelligent healthcare applications: A survey. Artif. Intell.
Medicine, 109(101964):1–16, 2020.

Gal Dalal, Krishnamurthy Dvijotham, Matej Vecerík, Todd Hester, Cosmin Paduraru,
and Yuval Tassa. Safe Exploration in Continuous Action Spaces. arXiv preprint
arXiv:1801.08757, 2018.

Frits de Nijs, Erwin Walraven, Mathijs M de Weerdt, and Matthijs T J Spaan. Bounding the
Probability of Resource Constraint Violations in Multi-Agent MDPs. In Proceedings of
the Thirty-First AAAI Conference on Artificial Intelligence, pages 3562–3568. AAAI Press,
2017.

Frits de Nijs, Erwin Walraven, Mathijs M de Weerdt, and Matthijs T J Spaan. Constrained
Multiagent Markov Decision Processes: a Taxonomy of Problems and Algorithms.
Journal of Artificial Intelligence Research, 70:955–1001, 2021.

Thomas Dean and Keiji Kanazawa. A model for reasoning about persistence and causa-
tion. Computational Intelligence, 5(3):142–150, 1989.

Richard Dearden and Craig Boutilier. Abstraction and approximate decision-theoretic
planning. Artificial Intelligence, 89(1):219–283, 1997.

Thomas Degris, Olivier Sigaud, and Pierre-Henri Wuillemin. Learning the Structure of
Factored Markov Decision Processes in Reinforcement Learning Problems. In Pro-
ceedings of the 23rd International Conference on Machine Learning, pages 257–264.
ACM, 2006.

Thomas Degris, Olivier Sigaud, and Pierre-Henri Wuillemin. Exploiting Additive Struc-
ture in Factored MDPs for Reinforcement Learning. In 8th European Workshop on
Recent Advances in Reinforcement Learning, Revised and Selected Papers, volume 5323
of Lecture Notes in Computer Science, pages 15–26. Springer, 2008.

Sheelabhadra Dey, Sumedh Pendurkar, Guni Sharon, and Josiah P Hanna. A Joint
Imitation-Reinforcement Learning Framework for Reduced Baseline Regret. In Proc.
of International Conference on Intelligent Robots and Systems, pages 1–7. IEEE, 2021.

Thomas G Dietterich. The MAXQ Method for Hierarchical Reinforcement Learning. In
Proceedings of the Fifteenth International Conference on Machine Learning, pages 118–
126. Morgan Kaufmann, 1998.

https://arxiv.org/abs/1905.09638
https://arxiv.org/abs/1801.08757
https://arxiv.org/abs/1801.08757

BIBLIOGRAPHY 109

Thomas G Dietterich, George Trimponias, and Zhitang Chen. Discovering and Removing
Exogenous State Variables and Rewards for Reinforcement Learning. In Proceedings
of the 35th International Conference on Machine Learning, pages 1262–1270. PMLR,
2018.

Carlos Diuk, Lihong Li, and Bethany R Leffler. The Adaptive k-meteorologists Prob-
lem and Its Application to Structure Learning and Feature Selection in Reinforcement
Learning. In Proceedings of the 26th International Conference on Machine Learning,
pages 249–256. ACM, 2009.

Michael Duff. Optimal Learning: Computational procedures for Bayes-adaptive Markov
decision processes. PhD thesis, University of Massachusetts, Amherst, United States,
2002.

Gabriel Dulac-Arnold, Nir Levine, Daniel J Mankowitz, Jerry Li, Cosmin Paduraru, Sven
Gowal, and Todd Hester. Challenges of real-world reinforcement learning: definitions,
benchmarks and analysis. Machine Learning, 110(9):2419–2468, 2021.

Yonathan Efroni, Shie Mannor, and Matteo Pirotta. Exploration-Exploitation in Con-
strained MDPs. arXiv preprint arXiv:2003.02189, presented at the ICML 2020 Work-
shop on Theoretical Foundations of Reinforcement Learning, 2020.

Damien Ernst, Pierre Geurts, and Louis Wehenkel. Tree-based batch mode reinforce-
ment learning. Journal of Machine Learning Research, 6(18):503–556, 2005.

Mehdi Fatemi, Shikhar Sharma, Harm van Seijen, and Samira Ebrahimi Kahou. Dead-
ends and Secure Exploration in Reinforcement Learning. In Proceedings of the 36th
International Conference on Machine Learning, pages 1873–1881. PMLR, 2019.

Eugene A Feinberg and Adam Shwartz. Handbook of Markov Decision Processes: Methods
and Applications. Springer US, 2002.

Zhengzhu Feng and Eric A Hansen. Symbolic Heuristic Search for Factored Markov De-
cision Processes. In Proceedings of the Eighteenth National Conference on Artificial
Intelligence, pages 455–460. AAAI Press, 2002.

Raphaël Féraud, Reda Alami, and Romain Laroche. Decentralized Exploration in Multi-
Armed Bandits. In Proceedings of the 36th International Conference on Machine Learn-
ing, pages 1901–1909. PMLR, 2019.

Lior Fox, Leshem Choshen, and Yonatan Loewenstein. DORA The Explorer: Directed
Outreaching Reinforcement Action-Selection. In Proceedings of the 6th International
Conference on Learning Representations, pages 1–11. OpenReview.net, 2018.

Scott Fujimoto, David Meger, and Doina Precup. Off-Policy Deep Reinforcement Learn-
ing without Exploration. In Proceedings of the 36th International Conference on Ma-
chine Learning, pages 2052–2062. PMLR, 2019.

Javier García and Fernando Fernández. A Comprehensive Survey on Safe Reinforcement
Learning. Journal of Machine Learning Research, 16:1437–1480, 2015.

https://arxiv.org/abs/2003.02189

110 BIBLIOGRAPHY

Ather Gattami, Qinbo Bai, and Vaneet Aggarwal. Reinforcement Learning for Con-
strained Markov Decision Processes. In Proceedings of the 24th International Con-
ference on Artificial Intelligence and Statistics, pages 2656–2664. PMLR, 2021.

Peter Geibel. Reinforcement Learning for MDPs with Constraints. In 17th European
Conference on Machine Learning, pages 646–653. Springer Berlin Heidelberg, 2006.

Florian Geißer and David Speck. Prost-DD — Utilizing Symbolic Classical Planning in
THTS. Sixth International Probabilistic Planning Competition (IPC-6): planner ab-
stracts, 2018.

Mahsa Ghasemi, Evan Scope Crafts, Bo Zhao, and Ufuk Topcu. Multiple Plans are Better
than One: Diverse Stochastic Planning. In Proceedings of the Thirty-First International
Conference on Automated Planning and Scheduling, pages 140–148. AAAI Press, 2021.

Robert Givan, Sonia M Leach, and Thomas Dean. Bounded-parameter Markov decision
processes. Artificial Intelligence, 122:71–109, 2000.

Robert Givan, Thomas Dean, and Matthew Greig. Equivalence notions and model mini-
mization in Markov decision processes. Artificial Intelligence, 147(1-2):163–223, 2003.

Mevludin Glavic, Raphaël Fonteneau, and Damien Ernst. Reinforcement Learning for
Electric Power System Decision and Control: Past Considerations and Perspectives.
IFAC-PapersOnLine, 50(1):6918–6927, 2017.

Nakul Gopalan, Marie desJardins, Michael L Littman, James MacGlashan, Shawn Squire,
Stefanie Tellex, John Winder, and Lawson L S Wong. Planning with Abstract Markov
Decision Processes. In Proceedings of the Twenty-Seventh International Conference on
Automated Planning and Scheduling, pages 480–488. AAAI Press, 2017.

Abhijit Gosavi. Reinforcement Learning for Model Building and Variance-penalized
Control. In Proceedings of the 2009 Winter Simulation Conference, pages 373–379.
IEEE, 2009.

Carlos Guestrin, Relu Patrascu, and Dale Schuurmans. Algorithm-Directed Exploration
for Model-Based Reinforcement Learning in Factored MDPs. In Proceedings of the 19th
International Conference on Machine Learning, pages 235–242. Morgan Kaufmann,
2002.

Carlos Guestrin, Daphne Koller, Ronald Parr, and Shobha Venkataraman. Efficient So-
lution Algorithms for Factored MDPs. Journal of Artificial Intelligence Research, 19:
399–468, 2003.

Sehoon Ha, Peng Xu, Zhenyu Tan, Sergey Levine, and Jie Tan. Learning to Walk in the
Real World with Minimal Human Effort. In 4th Conference on Robot Learning, pages
1110–1120. PMLR, 2020.

Assaf Hallak, François Schnitzler, Timothy Arthur Mann, and Shie Mannor. Off-policy
Model-based Learning under Unknown Factored Dynamics. In Proceedings of the
32nd International Conference on Machine Learning, pages 711–719. PMLR, 2015.

BIBLIOGRAPHY 111

Eric A Hansen. An integrated approach to solving influence diagrams and finite-horizon
partially observable decision processes. Artificial Intelligence, 294(103431):1–47, 2021.

Eric A Hansen and Thomas J Bowman. Improved Vector Pruning in Exact Algorithms
for Solving POMDPs. In Proceedings of the 36th Conference on Uncertainty in Artificial
Intelligence, pages 1258–1267. PMLR, 2020.

Mohammadhosein Hasanbeig, Alessandro Abate, and Daniel Kroening. Cautious Rein-
forcement Learning with Logical Constraints. In Proceedings of the 19th International
Conference on Autonomous Agents and MultiAgent Systems, page 483–491. IFAAMAS,
2020.

Aria HasanzadeZonuzy, Dileep M Kalathil, and Srinivas Shakkottai. Learning with Safety
Constraints: Sample Complexity of Reinforcement Learning for Constrained MDPs. In
Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, pages 7667–
7674. AAAI Press, 2021.

Ammar Haydari and Yasin Yilmaz. Deep Reinforcement Learning for Intelligent Trans-
portation Systems: A Survey. IEEE Trans. Intell. Transp. Syst., pages 1–22, 2020.

Conor F Hayes, Roxana Radulescu, Eugenio Bargiacchi, Johan Källström, Matthew Mac-
farlane, Mathieu Reymond, Timothy Verstraeten, Luisa M Zintgraf, Richard Daze-
ley, Fredrik Heintz, Enda Howley, Athirai A Irissappane, Patrick Mannion, Ann Nowé,
Gabriel de Oliveira Ramos, Marcello Restelli, Peter Vamplew, and Diederik M Roijers.
A Practical Guide to Multi-Objective Reinforcement Learning and Planning. arXiv
preprint arXiv:2103.09568, 2021.

Matthias Heger. Consideration of Risk in Reinforcement Learning. In Proceedings of
the 11th International Conference on Machine Learning, pages 105–111. Morgan Kauf-
mann, 1994.

Wassily Hoeffding. Probability Inequalities for Sums of Bounded Random Variables.
Journal of the American Statistical Association, 58(301):13–30, 1963.

Jesse Hoey, Robert St-Aubin, Alan J Hu, and Craig Boutilier. SPUDD: Stochastic Planning
using Decision Diagrams. In Proceedings of the Fifteenth Conference on Uncertainty in
Artificial Intelligence, pages 279–288. Morgan Kaufmann, 1999.

Ronald A Howard and James E Matheson. Risk-Sensitive Markov Decision Processes.
Management Science, 18(7):356–369, 1972.

Eyke Hüllermeier and Willem Waegeman. Aleatoric and epistemic uncertainty in ma-
chine learning: an introduction to concepts and methods. Machine Learning, 110:
457–506, 2021.

Garud N Iyengar. Robust Dynamic Programming. Mathematics of Operations Research,
30(2):257–280, 2005.

Thomas Jaksch, Ronald Ortner, and Peter Auer. Near-optimal Regret Bounds for Rein-
forcement Learning. Journal of Machine Learning Research, 11:1563–1600, 2010.

https://arxiv.org/abs/2103.09568
https://arxiv.org/abs/2103.09568

112 BIBLIOGRAPHY

Furqan Jameel, Uzair Javaid, Wali Ullah Khan, Muhammad Naveed Aman, Haris Pervaiz,
and Riku Jäntti. Reinforcement Learning in Blockchain-Enabled IIoT Networks: A Sur-
vey of Recent Advances and Open Challenges. Sustainability, 12(12):1–22, 2020.

Nils Jansen, Bettina Könighofer, Sebastian Junges, Alex Serban, and Roderick Bloem.
Safe Reinforcement Learning Using Probabilistic Shields (Invited Paper). In 31st Inter-
national Conference on Concurrency Theory, pages 1–16. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2020.

Chi Jin, Tiancheng Jin, Haipeng Luo, Suvrit Sra, and Tiancheng Yu. Learning Adversar-
ial MDPs with Bandit Feedback and Unknown Transition. In Proceedings of the 37th
International Conference on Machine Learning, pages 4860–4869. PMLR, 2020a.

Chi Jin, Akshay Krishnamurthy, Max Simchowitz, and Tiancheng Yu. Reward-Free Explo-
ration for Reinforcement Learning. In Proceedings of the 37th International Conference
on Machine Learning, pages 4870–4879. PMLR, 2020b.

Chi Jin, Zhuoran Yang, Zhaoran Wang, and Michael I Jordan. Provably Efficient Rein-
forcement Learning with Linear Function Approximation. In Proceedings of Thirty
Third Conference on Learning Theory, pages 2137–2143. PMLR, 2020c.

Ying Jin, Zhuoran Yang, and Zhaoran Wang. Is Pessimism Provably Efficient for Offline
RL? In Proceedings of the 38th International Conference on Machine Learning, pages
5084–5096. PMLR, 2021.

Anders Jonsson and Andrew G Barto. Active Learning of Dynamic Bayesian Networks in
Markov Decision Processes. In 7th International Symposium on Abstraction, Reformu-
lation, and Approximation, pages 273–284. Springer, 2007.

Sebastian Junges, Nils Jansen, Christian Dehnert, Ufuk Topcu, and Joost-Pieter Katoen.
Safety-Constrained Reinforcement Learning for MDPs. In International Conference
on Tools and Algorithms for the Construction and Analysis of Systems, pages 130–146.
Springer, 2016.

Sham Kakade and John Langford. Approximately Optimal Approximate Reinforcement
Learning. In Proceedings of the 19th International Conference on Machine Learning,
pages 267–274. Morgan Kaufmann, 2002.

Danial Kamran, Thiago D. Simão, Qisong Yang, Canmanie T. Ponnambalam, Johannes
Fischer, Matthijs T. J. Spaan, and Martin Lauer. A modern perspective on safe auto-
mated driving for different traffic dynamics using constrained reinforcement learning.
In 25th IEEE International Conference on Intelligent Transportation Systems (ITSC),
pages 4017–4023. IEEE, 2022.

Michael J Kearns and Daphne Koller. Efficient Reinforcement Learning in Factored
MDPs. In Proc. Int. Joint Conf. on Artificial Intelligence, pages 740–747. Morgan Kauf-
mann, 1999.

Michael J Kearns and Satinder P Singh. Near-Optimal Reinforcement Learning in Poly-
nomial Time. Machine Learning, 49(2-3):209–232, 2002.

BIBLIOGRAPHY 113

B Ravi Kiran, Ibrahim Sobh, Victor Talpaert, Patrick Mannion, Ahmad A Al Sallab, Senthil
Yogamani, and Patrick Perez. Deep Reinforcement Learning for Autonomous Driving:
A Survey. IEEE Transactions on Intelligent Transportation Systems, pages 1–18, 2021.

Levente Kocsis and Csaba Szepesvári. Bandit Based Monte-carlo Planning. In 17th Eu-
ropean Conference on Machine Learning, pages 282–293. Springer, 2006.

Anna Kosiorek. Safe Optimization of Steel Manufacturing with Reinforce-
ment Learning. Master’s thesis, Delft University of Technology, Delft,
The Netherlands, 2020. URL http://resolver.tudelft.nl/uuid:
efbe886c-1b39-4696-9032-3fc1bbe7e445.

Aviral Kumar, Justin Fu, George Tucker, and Sergey Levine. Stabilizing Off-Policy Q-
Learning via Bootstrapping Error Reduction. In Advances in Neural Information Pro-
cessing Systems 32, pages 11761–11771. Curran Associates, Inc., 2019.

Saurabh Kumar, Aviral Kumar, Sergey Levine, and Chelsea Finn. One Solution is Not All
You Need: Few-Shot Extrapolation via Structured MaxEnt RL. In Advances in Neural
Information Processing Systems 34, pages 8198–8210. Curran Associates, Inc., 2020.

Michail G Lagoudakis and Ronald Parr. Least-squares Policy Iteration. Journal of Ma-
chine Learning Research, 4(Dec):1107–1149, 2003.

Sascha Lange, Thomas Gabel, and Martin Riedmiller. Batch Reinforcement Learning. In
Marco A Wiering and Martijn van Otterlo, editors, Reinforcement Learning: State-of-
the-Art, pages 45–73. Springer Berlin Heidelberg, 2012.

Romain Laroche and Rémi Tachet des Combes. Multi-batch Reinforcement Learning.
In Proceedings of the 4th Multidisciplinary Conference on Reinforcement Learning and
Decision Making. RLDM, 2019.

Romain Laroche, Paul Trichelair, and Rémi Tachet des Combes. Safe Policy Improvement
with Baseline Bootstrapping. In Proceedings of the 36th International Conference on
Machine Learning, pages 3652–3661. PMLR, 2019.

Hoang Le, Cameron Voloshin, and Yisong Yue. Batch Policy Learning under Constraints.
In Proceedings of the 36th International Conference on Machine Learning, pages 3703–
3712. PMLR, 2019.

Y Lecun, L Bottou, Y Bengio, and P Haffner. Gradient-based learning applied to docu-
ment recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Jongmin Lee, Youngsoo Jang, Pascal Poupart, and Kee-Eung Kim. Constrained Bayesian
Reinforcement Learning via Approximate Linear Programming. In Proceedings of
the Twenty-Sixth International Joint Conference on Artificial Intelligence, pages 2088–
2095. ijcai.org, 2017.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline Reinforcement
Learning: Tutorial, Review, and Perspectives on Open Problems. arXiv preprint
arXiv:2005.01643, 2020.

http://resolver.tudelft.nl/uuid:efbe886c-1b39-4696-9032-3fc1bbe7e445
http://resolver.tudelft.nl/uuid:efbe886c-1b39-4696-9032-3fc1bbe7e445
https://arxiv.org/abs/2005.01643
https://arxiv.org/abs/2005.01643

114 BIBLIOGRAPHY

Lihong Li. Sample Complexity Bounds of Exploration. In Marco A Wiering and Mar-
tijn van Otterlo, editors, Reinforcement Learning: State-of-the-Art, pages 175–204.
Springer Berlin Heidelberg, 2012.

Lihong Li, Thomas J Walsh, and Michael L Littman. Towards a Unified Theory of State
Abstraction for MDPs. In International Symposium on Artificial Intelligence and Math-
ematics, pages 1–10. ISAIM, 2006.

Lihong Li, Michael L Littman, Thomas J Walsh, and Alexander L Strehl. Knows What
It Knows: A Framework For Self-Aware Learning. Machine Learning, 82(3):399–443,
2011.

Shiau Hong Lim, Huan Xu, and Shie Mannor. Reinforcement Learning in Robust Markov
Decision Processes. Mathematics of Operations Research, 41(4):1325–1353, 2016.

Jinliang Liu, Liang Xiao, Guolong Liu, and Yifeng Zhao. Active authentication with re-
inforcement learning based on ambient radio signals. Multimedia Tools and Applica-
tions, 76(3):3979–3998, 2017.

Siqi Liu, Kay Choong See, Kee Yuan Ngiam, Leo Anthony Celi, Xingzhi Sun, and Mengling
Feng. Reinforcement Learning for Clinical Decision Support in Critical Care: Compre-
hensive Review. Journal of Medical Internet Research, 22(7):1–16, 2020.

Vincent Liu, James Wright, and Martha White. Exploiting Action Impact Regularity
and Partially Known Models for Offline Reinforcement Learning. arXiv preprint
arXiv:2111.08066, 2021a.

Yongshuai Liu, Avishai Halev, and Xin Liu. Policy Learning with Constraints in Model-
free Reinforcement Learning: A Survey. In Proceedings of the Thirtieth International
Joint Conference on Artificial Intelligence, pages 4508–4515. ijcai.org, 2021b.

Yuping Luo and Tengyu Ma. Learning Barrier Certificates: Towards Safe Reinforcement
Learning with Zero Training-time Violations. arXiv preprint arXiv:2108.01846, pre-
sented at the ICML 2021 Workshop on Reinforcement Learning for Real Life, 2021.

Travis Mandel, Yun-En Liu, Sergey Levine, Emma Brunskill, and Zoran Popovic. Offline
Policy Evaluation Across Representations with Applications to Educational Games. In
Proceedings of the 13th International Conference on Autonomous Agents and MultiA-
gent Systems, pages 1077–1084. IFAAMAS, 2014.

Hongzi Mao, Malte Schwarzkopf, Hao He, and Mohammad Alizadeh. Towards Safe On-
line Reinforcement Learning in Computer Systems. Presented at the NeurIPS 2019
Workshop on Machine Learning for Systems, http://mlforsystems.org/assets/
papers/neurips2019/towards_mao_2019.pdf, 2019.

Mausam and Andrey Kolobov. Planning with Markov Decision Processes: An AI Perspec-
tive. Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan &
Claypool Publishers, 2012.

https://arxiv.org/abs/2111.08066
https://arxiv.org/abs/2111.08066
https://arxiv.org/abs/2108.01846
http://mlforsystems.org/assets/papers/neurips2019/towards_mao_2019.pdf
http://mlforsystems.org/assets/papers/neurips2019/towards_mao_2019.pdf

BIBLIOGRAPHY 115

Colin McDiarmid. Concentration. In Probabilistic Methods for Algorithmic Discrete
Mathematics, pages 195–248. Springer Berlin Heidelberg, 1998.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.
Human-level Control Through Deep Reinforcement Learning. Nature, 518(7540):529–
533, 2015.

Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Timothy P Lil-
licrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous Methods for
Deep Reinforcement Learning. In Proceedings of the 33rd International Conference on
Machine Learning, pages 1928–1937. PMLR, 2016.

Thomas M Moerland, Joost Broekens, and Catholijn M Jonker. Model-based Reinforce-
ment Learning: A Survey. arXiv preprint arXiv:2006.16712, 2021.

Teodor Mihai Moldovan and Pieter Abbeel. Safe Exploration in Markov Decision Pro-
cesses. In Proceedings of the 29th International Conference on Machine Learning,
pages 1711–1718. Omnipress, 2012.

Daniel A M Moreira, Karina V Delgado, Leliane N de Barros, and Denis D Mauá. Efficient
algorithms for Risk-Sensitive Markov Decision Processes with limited budget. Inter-
national Journal of Approximate Reasoning, 139:143–165, 2021.

Rémi Munos. From bandits to monte-carlo tree search: The optimistic principle applied
to optimization and planning. Foundations and Trends in Machine Learning, 7:1–129,
2014.

Rémi Munos. Distributional Reinforcement Learning, 2018. Horizon Maths https://
vimeo.com/304849090.

Kimia Nadjahi, Romain Laroche, and Rémi Tachet des Combes. Safe Policy Improvement
with Soft Baseline Bootstrapping. In Joint European Conference on Machine Learning
and Knowledge Discovery in Databases, pages 53–68. Springer International Publish-
ing, 2019.

Grigory Neustroev and Mathijs M de Weerdt. Generalized Optimistic Q-Learning with
Provable Efficiency. In Proceedings of the 19th International Conference on Au-
tonomous Agents and MultiAgent Systems, pages 913–921. IFAAMAS, 2020.

Jun Hao Alvin Ng and Ronald P A Petrick. Incremental learning of planning actions in
model-based reinforcement learning. In Proceedings of the Twenty-Eighth Interna-
tional Joint Conference on Artificial Intelligence, pages 3195–3201. ijcai.org, 2019.

Arnab Nilim and Laurent El Ghaoui. Robust Control of Markov Decision Processes with
Uncertain Transition Matrices. Operations Research, 53(5):780–798, 2005.

Frans A Oliehoek, Matthijs T J Spaan, Shimon Whiteson, and Nikos Vlassis. Exploiting
locality of interaction in factored Dec-POMDPs. In Proceedings of the 7th International
Conference on Autonomous Agents and Multiagent Systems, pages 517–524. IFAAMAS,
2008.

https://arxiv.org/abs/2006.16712
https://vimeo.com/304849090
https://vimeo.com/304849090

116 BIBLIOGRAPHY

Frans A Oliehoek, Stefan J Witwicki, and Leslie P Kaelbling. Influence-Based Abstrac-
tion for Multiagent Systems. In Proceedings of the Twenty-Sixth AAAI Conference on
Artificial Intelligence, pages 1422–1428. AAAI Press, 2012.

Ronald Ortner. Adaptive aggregation for reinforcement learning in average reward
Markov decision processes. Annals OR, 208(1):321–336, 2013.

Takayuki Osa, Joni Pajarinen, Gerhard Neumann, J Andrew Bagnell, Pieter Abbeel, and
Jan Peters. An Algorithmic Perspective on Imitation Learning. Foundations and
Trends® in Robotics, 7(1-2):1–179, 2018.

Ian Osband and Benjamin Van Roy. Near-optimal Reinforcement Learning in Factored
MDPs. In Advances in Neural Information Processing Systems 27, pages 604–612. Cur-
ran Associates, Inc., 2014.

Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep Explo-
ration via Bootstrapped DQN. In Advances in Neural Information Processing Sys-
tems 29, pages 4026–4034. Curran Associates, Inc., 2016.

Cosmin Paduraru. Off-policy Evaluation in Markov Decision Processes. PhD thesis,
McGill University, Montreal, Canada, 2013.

Marcel Panzer and Benedict Bender. Deep reinforcement learning in production sys-
tems: a systematic literature review. International Journal of Production Research,
pages 1–26, 2021.

Matteo Papini, Matteo Pirotta, and Marcello Restelli. Adaptive Batch Size for Safe Policy
Gradients. In Advances in Neural Information Processing Systems 30, pages 3591–3600.
Curran Associates, Inc., 2017.

Martin Pecka and Tomás Svoboda. Safe Exploration Techniques for Reinforcement
Learning – An Overview. In First International Workshop on Modelling and Simula-
tion for Autonomous Systems, pages 357–375. Springer, 2014.

Xue Bin Peng, Erwin Coumans, Tingnan Zhang, Tsang-Wei Edward Lee, Jie Tan, and
Sergey Levine. Learning Agile Robotic Locomotion Skills by Imitating Animals. In
Robotics: Science and Systems XVI, pages 1–12. roboticsproceedings.org, 2020.

Marek Petrik, Mohammad Ghavamzadeh, and Yinlam Chow. Safe Policy Improvement
by Minimizing Robust Baseline Regret. In Advances in Neural Information Processing
Systems 29, pages 2298–2306. Curran Associates, Inc., 2016.

Dung T Phan, Radu Grosu, Nils Jansen, Nicola Paoletti, Scott A Smolka, and Scott D
Stoller. Neural Simplex Architecture. In 12th NASA Formal Methods Symposium, pages
97–114. Springer, 2020.

Joelle Pineau. Safe and Sound Reinforcement Learning. Keynote at the 32nd Interna-
tional Conference on Algorithmic Learning Theory, 2021. URL https://youtu.be/
e6n-jM1f5_4.

https://youtu.be/e6n-jM1f5_4
https://youtu.be/e6n-jM1f5_4

BIBLIOGRAPHY 117

Matteo Pirotta, Marcello Restelli, Alessio Pecorino, and Daniele Calandriello. Safe Policy
Iteration. In Proceedings of the 30th International Conference on Machine Learning,
pages 307–315. PMLR, 2013.

Canmanie T Ponnambalam, Frans A Oliehoek, and Matthijs T J Spaan. Abstraction-
Guided Policy Recovery from Expert Demonstrations. In Proceedings of the Thirty-
First International Conference on Automated Planning and Scheduling, pages 560–568.
AAAI Press, 2021.

Pascal Poupart, Aarti Malhotra, Pei Pei, Kee-Eung Kim, Bongseok Goh, and Michael
Bowling. Approximate Linear Programming for Constrained Partially Observable
Markov Decision Processes. In Proceedings of the Twenty-Ninth AAAI Conference on
Artificial Intelligence, pages 3342–3348. AAAI Press, 2015.

Bharat Prakash, Mohit Khatwani, Nicholas R Waytowich, and Tinoosh Mohsenin. Im-
proving Safety in Reinforcement Learning Using Model-Based Architectures and Hu-
man Intervention. In Proceedings of the Thirty-Second International Florida Artificial
Intelligence Research Society Conference, pages 50–55. AAAI Press, 2019.

Martin L Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Program-
ming. John Wiley & Sons, Inc., 1st edition, 1994.

Yichen Qian, Jun Wu, Rui Wang, Fusheng Zhu, and Wei Zhang. Survey on Reinforcement
Learning Applications in Communication Networks. J. Commun. Inf. Networks, 4(2):
30–39, 2019.

Zengyi Qin, Yuxiao Chen, and Chuchu Fan. Density Constrained Reinforcement Learn-
ing. In Proceedings of the 38th International Conference on Machine Learning, pages
8682–8692. PMLR, 2021.

Paria Rashidinejad, Banghua Zhu, Cong Ma, Jiantao Jiao, and Stuart Russell. Bridg-
ing Offline Reinforcement Learning and Imitation Learning: A Tale of Pessimism. In
Advances in Neural Information Processing Systems 35. Curran Associates, Inc., 2021.
arXiv preprint arXiv:2103.12021.

Harish Ravichandar, Athanasios S Polydoros, Sonia Chernova, and Aude Billard. Recent
Advances in Robot Learning from Demonstration. Annual Review of Control, Robotics,
and Autonomous Systems, 3(1):297–330, 2020.

Alex Ray, Joshua Achiam, and Dario Amodei. Benchmarking Safe Exploration in Deep
Reinforcement Learning, 2019. URL https://github.com/openai/safety-gym.

Alberto Reyes, Matthijs T J Spaan, and L Enrique Sucar. An Intelligent Assistant for Power
Plants Based on Factored MDPs. In 15th International Conference on Intelligent System
Applications to Power Systems, pages 1–6. IEEE, 2009.

Alberto Reyes, Pablo H Ibargüengoytia, Inés Romero-Leon, David Pech, and Mónica
Borunda. Building Optimal Operation Policies for Dam Management Using Factored

https://arxiv.org/abs/2103.12021
https://github.com/openai/safety-gym

118 BIBLIOGRAPHY

Markov Decision Processes. In Advances in Artificial Intelligence and Its Applica-
tions - 14th Mexican International Conference on Artificial Intelligence, pages 475–484.
Springer, 2015.

Martin Riedmiller, Jost Tobias Springenberg, Roland Hafner, and Nicolas Heess. Col-
lect & Infer - a fresh look at data-efficient Reinforcement Learning. arXiv preprint
arXiv:2108.10273, 2021.

Marc Rigter, Bruno Lacerda, and Nick Hawes. Risk-Averse Bayes-Adaptive Reinforce-
ment Learning. In Advances in Neural Information Processing Systems 35. Curran As-
sociates, Inc., 2021. arXiv preprint arXiv:2102.05762.

Melrose Roderick, Vaishnavh Nagarajan, and J Zico Kolter. Provably Safe PAC-MDP Ex-
ploration Using Analogies. In Proceedings of the 24th International Conference on Ar-
tificial Intelligence and Statistics, pages 1216–1224. PMLR, 2021.

Diederik M Roijers, Peter Vamplew, Shimon Whiteson, and Richard Dazeley. A Survey
of Multi-Objective Sequential Decision-Making. Journal of Artificial Intelligence Re-
search, 48:67–113, 2013.

Aviv Rosenberg and Yishay Mansour. Online Convex Optimization in Adversarial Markov
Decision Processes. In Proceedings of the 36th International Conference on Machine
Learning, pages 5478–5486. PMLR, 2019.

Stéphane Ross and Joelle Pineau. Model-Based Bayesian Reinforcement Learning in
Large Structured Domains. In Proceedings of the Twenty-Fourth Conference on Un-
certainty in Artificial Intelligence, pages 476–483. AUAI Press, 2008.

Maxim Rostov and Michael Kaisers. Robust Online Planning with Imperfect Models.
Adaptive and Learning Agents Workshop at AAMAS, 2021. URL https://ala2021.
vub.ac.be/papers/ALA2021_paper_25.pdf.

Julien Roy, Joshua Roger and, Girgis Romoff, Pierre-Luc Bacon, and Christopher Pal. Di-
rect Behavior Specification via Constrained Reinforcement Learning. arXiv preprint
arXiv:2112.12228, 2021.

Gavin Adrian Rummery and Mahesan Niranjan. On-Line Q-Learning Using Connec-
tionist Systems. Technical report, Engineering Department, Cambridge University,
Cambridge, United Kingdom, November 1994. URL http://mi.eng.cam.ac.uk/
reports/svr-ftp/auto-pdf/rummery_tr166.pdf.

Reazul Hasan Russel and Marek Petrik. Beyond Confidence Regions: Tight Bayesian
Ambiguity Sets for Robust MDPs. In Advances in Neural Information Processing Sys-
tems 32, pages 7049–7058. Curran Associates, Inc., 2019.

Régis Sabbadin, Florent Teichteil-Königsbuch, and Vincent Vidal. Planning in Artificial
Intelligence. In Pierre Marquis, Odile Papini, and Henri Prade, editors, A Guided Tour
of Artificial Intelligence Research, Volume II: AI Algorithms, pages 285–312. Springer
International Publishing, 2020.

https://arxiv.org/abs/2108.10273
https://arxiv.org/abs/2108.10273
https://arxiv.org/abs/2102.05762
https://ala2021.vub.ac.be/papers/ALA2021_paper_25.pdf
https://ala2021.vub.ac.be/papers/ALA2021_paper_25.pdf
https://arxiv.org/abs/2112.12228
https://arxiv.org/abs/2112.12228
http://mi.eng.cam.ac.uk/reports/svr-ftp/auto-pdf/rummery_tr166.pdf
http://mi.eng.cam.ac.uk/reports/svr-ftp/auto-pdf/rummery_tr166.pdf

BIBLIOGRAPHY 119

Scott Sanner. Relational Dynamic Influence Diagram Language (RDDL): Language
Description, 2010. URL http://users.cecs.anu.edu.au/~ssanner/IPPC_2011/
RDDL.pdf.

Harsh Satija, Philip S Thomas, Joelle Pineau, and Romain Laroche. Multi-Objective
SPIBB: Seldonian Offline Policy Improvement with Safety Constraints in Finite MDPs.
In Advances in Neural Information Processing Systems 35. Curran Associates, Inc.,
2021. arXiv preprint arXiv:2106.00099.

William Saunders, Girish Sastry, Andreas Stuhlmüller, and Owain Evans. Trial without
Error: Towards Safe Reinforcement Learning via Human Intervention. In Proceedings
of the 17th International Conference on Autonomous Agents and MultiAgent Systems,
pages 2067–2069. IFAAMAS, 2018.

Yagiz Savas, Melkior Ornik, Murat Cubuktepe, and Ufuk Topcu. Entropy Maximization
for Constrained Markov Decision Processes. In 56th Annual Allerton Conference on
Communication, Control, and Computing, pages 911–918. IEEE, 2018.

Frank N H Schrama, Daan Merkestein, Mart Jansen, Walter Vortrefflich, and Bart van den
Berg. Steel Plant Model for Optimization of Steel Plant Logistics. In Proceedings of the
6th International Congress on the Science and Technology of Steelmaking, pages 204–
207. Chinese Society for Metals, 2015.

John Schulman, Sergey Levine, Pieter Abbeel, Michael I Jordan, and Philipp Moritz. Trust
Region Policy Optimization. In Proceedings of the 32nd International Conference on
Machine Learning, pages 1889–1897. PMLR, 2015.

John Schulman, Philipp Moritz, Sergey Levine, Michael I Jordan, and Pieter Abbeel.
High-Dimensional Continuous Control Using Generalized Advantage Estimation. In
Proceedings of the 4th International Conference on Learning Representations, pages 1–
11. OpenReview.net, 2016.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
Policy Optimization Algorithms. arXiv preprint arXiv:1707.06347, 2017.

Iulian V Serban, Alessandro Sordoni, Yoshua Bengio, Aaron Courville, and Joelle Pineau.
Building End-to-end Dialogue Systems Using Generative Hierarchical Neural Network
Models. In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, pages
3776–3784. AAAI Press, 2016.

Roshan Shariff and Csaba Szepesvári. Efficient Planning in Large MDPs with Weak Linear
Function Approximation. In Advances in Neural Information Processing Systems 33,
pages 19163–19174. Curran Associates, Inc., 2020.

Apoorva Sharma, James Harrison, Matthew Tsao, and Marco Pavone. Robust and Adap-
tive Planning under Model Uncertainty. In Proceedings of the Twenty-Ninth Interna-
tional Conference on Automated Planning and Scheduling, pages 410–418. AAAI Press,
2019.

http://users.cecs.anu.edu.au/~ssanner/IPPC_2011/RDDL.pdf
http://users.cecs.anu.edu.au/~ssanner/IPPC_2011/RDDL.pdf
https://arxiv.org/abs/2106.00099
https://arxiv.org/abs/1707.06347

120 BIBLIOGRAPHY

Felipe Leno da Silva, Pablo Hernandez-Leal, Bilal Kartal, and Matthew E Taylor.
Uncertainty-Aware Action Advising for Deep Reinforcement Learning Agents. In The
Thirty-Fourth AAAI Conference on Artificial Intelligence, pages 5792–5799. AAAI Press,
2020.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George van den
Driessche, Julian Schrittwieser, Ioannis Antonoglou, Vedavyas Panneershelvam, Marc
Lanctot, Sander Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya
Sutskever, Timothy P Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore Graepel,
and Demis Hassabis. Mastering the game of Go with deep neural networks and tree
search. Nature, 529(7587):484–489, 2016.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang,
Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, Yutian Chen,
Timothy P Lillicrap, Fan Hui, Laurent Sifre, George van den Driessche, Thore Graepel,
and Demis Hassabis. Mastering the game of Go without human knowledge. Nature,
550(7676):354–359, 2017.

Thiago D Simão. Safe and Sample-Efficient Reinforcement Learning Algorithms for Fac-
tored Environments. In Proceedings of the Twenty-Eighth International Joint Confer-
ence on Artificial Intelligence, pages 6460–6461. ijcai.org, 2019.

Thiago D Simão and Matthijs T J Spaan. Safe Policy Improvement with Baseline Boot-
strapping in Factored Environments. In Proceedings of the Thirty-Third AAAI Confer-
ence on Artificial Intelligence, pages 4967–4974. AAAI Press, 2019a.

Thiago D Simão and Matthijs T J Spaan. Structure Learning for Safe Policy Improve-
ment. In Proceedings of the Twenty-Eighth International Joint Conference on Artificial
Intelligence, pages 3453–3459. ijcai.org, 2019b.

Thiago D Simão, Romain Laroche, and Rémi Tachet des Combes. Safe Policy Improve-
ment with an Estimated Baseline Policy. In Proceedings of the 19th International Con-
ference on Autonomous Agents and MultiAgent Systems, page 1269–1277. IFAAMAS,
2020.

Thiago D Simão, Nils Jansen, and Matthijs T J Spaan. AlwaysSafe: Reinforcement Learn-
ing Without Safety Constraint Violations During Training. In Proceedings of the 20th
International Conference on Autonomous Agents and MultiAgent Systems, pages 1226–
1235. IFAAMAS, 2021.

Alexander L Strehl. Model-Based Reinforcement Learning in Factored-State MDPs. In
2007 IEEE International Symposium on Approximate Dynamic Programming and Re-
inforcement Learning, pages 103–110. IEEE, 2007.

Alexander L Strehl and Michael L Littman. An analysis of model-based Interval Esti-
mation for Markov Decision Processes. Journal of Computer and System Sciences, 74:
1309–1331, 2008.

BIBLIOGRAPHY 121

Alexander L Strehl, Carlos Diuk, and Michael L Littman. Efficient Structure Learning in
Factored-State MDPs. In Proceedings of the Twenty-Second AAAI Conference on Artifi-
cial Intelligence, pages 645–650. AAAI Press, 2007.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to Sequence Learning with Neural
Networks. In Advances in Neural Information Processing Systems 27, pages 3104–3112.
Curran Associates, Inc., 2014.

Richard S Sutton and Andrew G Barto. Reinforcement Learning: An Introduction. MIT
Press, 2 edition, 2018.

Richard S. Sutton, Doina Precup, and Satinder Singh. Between MDPs and Semi-MDPs:
A Framework for Temporal Abstraction in Reinforcement Learning. Artif. Intell., 112
(1-2):181–211, 1999.

Majid Alkaee Taleghan and Thomas G Dietterich. Efficient Exploration for Constrained
MDPs. In 2018 AAAI Spring Symposia, pages 313–319. AAAI Press, 2018.

Maryam Tavakol and Ulf Brefeld. Factored MDPs for Detecting Topics of User Sessions.
In Eighth ACM Conference on Recommender Systems, pages 33–40. ACM, 2014.

Matthew E Taylor, Nicholas K Jong, and Peter Stone. Transferring Instances for Model-
Based Reinforcement Learning. In Joint European Conference on Machine Learning
and Knowledge Discovery in Databases, pages 488–505. Springer, 2008.

Chen Tessler, Daniel J Mankowitz, and Shie Mannor. Reward Constrained Policy Opti-
mization. In Proceedings of the 7th International Conference on Learning Representa-
tions, pages 1–11. OpenReview.net, 2019.

Philip S Thomas, Georgios Theocharous, and Mohammad Ghavamzadeh. High-
Confidence Off-Policy Evaluation. In Proceedings of the Twenty-Ninth AAAI Conference
on Artificial Intelligence, pages 3000–3006. AAAI Press, 2015a.

Philip S Thomas, Georgios Theocharous, and Mohammad Ghavamzadeh. High Confi-
dence Policy Improvement. In Proceedings of the 32nd International Conference on
Machine Learning, pages 2380–2388. PMLR, 2015b.

Andrea Lockerd Thomaz and Cynthia Breazeal. Teachable robots: Understanding hu-
man teaching behavior to build more effective robot learners. Artificial Intelligence,
172(6-7):716–737, 2008.

Arryon D Tijsma, Madalina M Drugan, and Marco A Wiering. Comparing Exploration
Strategies for Q-learning in Random Stochastic Mazes. In IEEE Symposium Series on
Computational Intelligence, pages 1–8. IEEE, 2016.

Matteo Turchetta, Felix Berkenkamp, and Andreas Krause. Safe Exploration in Finite
Markov Decision Processes with Gaussian Processes. In Advances in Neural Informa-
tion Processing Systems 29, pages 4312–4320. Curran Associates, Inc., 2016.

122 BIBLIOGRAPHY

Matteo Turchetta, Felix Berkenkamp, and Andreas Krause. Safe Exploration for Inter-
active Machine Learning. In Advances in Neural Information Processing Systems 32,
pages 2887–2897. Curran Associates, Inc., 2019.

Matteo Turchetta, Andrey Kolobov, Shital Shah, Andreas Krause, and Alekh Agarwal. Safe
Reinforcement Learning via Curriculum Induction. In Advances in Neural Information
Processing Systems 33, pages 12151–12162. Curran Associates, Inc., 2020.

Aashma Uprety and Danda B Rawat. Reinforcement Learning for IoT Security: A Com-
prehensive Survey. IEEE Internet of Things Journal, 8(11):8693–8706, 2021.

Hado van Hasselt, Arthur Guez, and David Silver. Deep Reinforcement Learning with
Double Q-learning. In Proceedings of the Thirtieth AAAI Conference on Artificial Intel-
ligence, pages 2094–2100. AAAI Press, 2016.

Harm van Seijen, Shimon Whiteson, and Leon J H M Kester. Efficient Abstraction Selec-
tion in Reinforcement Learning. Computational Intelligence, 30(4):657–699, 2014.

Harm van Seijen, Mehdi Fatemi, Romain Laroche, Joshua Romoff, Tavian Barnes, and
Jeffrey Tsang. Hybrid Reward Architecture for Reinforcement Learning. In Advances in
Neural Information Processing Systems 31, pages 5392–5402. Curran Associates, Inc.,
2017.

José R Vázquez-Canteli and Zoltán Nagy. Reinforcement learning for demand response:
A review of algorithms and modeling techniques. Applied Energy, 235:1072–1089,
2019.

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew
Dudzik, Junyoung Chung, David H Choi, Richard Powell, Timo Ewalds, Petko
Georgiev, Junhyuk Oh, Dan Horgan, Manuel Kroiss, Ivo Danihelka, Aja Huang, Laurent
Sifre, Trevor Cai, John P Agapiou, Max Jaderberg, Alexander Sasha Vezhnevets, Rémi
Leblond, Tobias Pohlen, Valentin Dalibard, David Budden, Yury Sulsky, James Mol-
loy, Tom Le Paine, Çaglar Gülçehre, Ziyu Wang, Tobias Pfaff, Yuhuai Wu, Roman Ring,
Dani Yogatama, Dario Wünsch, Katrina McKinney, Oliver Smith, Tom Schaul, Tim-
othy P Lillicrap, Koray Kavukcuoglu, Demis Hassabis, Chris Apps, and David Silver.
Grandmaster level in StarCraft II using multi-agent reinforcement learning. Nature,
575(7782):350–354, 2019.

Nikos Vlassis, Mohammad Ghavamzadeh, Shie Mannor, and Pascal Poupart. Bayesian
Reinforcement Learning. In Marco A Wiering and Martijn van Otterlo, editors, Rein-
forcement Learning: State-of-the-Art, pages 359–386. Springer Berlin Heidelberg, 2012.

Akifumi Wachi and Yanan Sui. Safe Reinforcement Learning in Constrained Markov
Decision Processes. In Proceedings of the 37th International Conference on Machine
Learning, pages 9797–9806. PMLR, 2020.

Akifumi Wachi, Yanan Sui, Yisong Yue, and Masahiro Ono. Safe Exploration and Opti-
mization of Constrained MDPs Using Gaussian Processes. In Proceedings of the Thirty-
Second AAAI Conference on Artificial Intelligence, pages 6548–6556. AAAI Press, 2018.

BIBLIOGRAPHY 123

Erwin Walraven and Matthijs T J Spaan. Column Generation Algorithms for Constrained
POMDPs. Journal of Artificial Intelligence Research, 62:489–533, 2018.

Ruosong Wang, Simon S Du, Lin F Yang, and Russ R Salakhutdinov. On Reward-Free
Reinforcement Learning with Linear Function Approximation. In Advances in Neural
Information Processing Systems 33, pages 17816–17826. Curran Associates, Inc., 2020.

Zhaorong Wang, Meng Wang, Jingqi Zhang, Yingfeng Chen, and Chongjie Zhang.
Reward-Constrained Behavior Cloning. In Proceedings of the Thirtieth International
Joint Conference on Artificial Intelligence, pages 3169–3175. ijcai.org, 2021.

Zhe Wang and Tianzhen Hong. Reinforcement learning for building controls: The op-
portunities and challenges. Applied Energy, 269(115036):1–18, 2020.

Christopher John Cornish Hellaby Watkins. Learning From Delayed Rewards. PhD thesis,
King’s College, Cambridge, United Kingdom, 1989.

Hua Wei, Guanjie Zheng, Vikash Gayah, and Zhenhui Li. Recent Advances in Reinforce-
ment Learning for Traffic Signal Control: A Survey of Models and Evaluation. ACM
SIGKDD Explorations Newsletter, 22(2):12–18, 2021.

Tsachy Weissman, Erik Ordentlich, Gadiel Seroussi, Sergio Verdu, and Marcelo J Wein-
berger. Inequalities for the L1 Deviation of the Empirical Distribution. Techni-
cal report, Hewlett-Packard Labs, Palo Alto, United States, June 2003. URL https:
//www.hpl.hp.com/techreports/2003/HPL-2003-97R1.html.

Wolfram Wiesemann, Daniel Kuhn, and Berç Rustem. Robust Markov Decision Pro-
cesses. Mathematics of Operations Research, 38(1):153–183, 2013.

Yulei Wu, Zehua Wang, Yuxiang Ma, and Victor C M Leung. Deep reinforcement learning
for blockchain in industrial IoT: A survey. Comput. Networks, 191(108004):1–11, 2021.

Chenjun Xiao, Ilbin Lee, Bo Dai, Dale Schuurmans, and Csaba Szepesvári. On the Sam-
ple Complexity of Batch Reinforcement Learning with Policy-Induced Data. arXiv
preprint arXiv:2106.09973, 2021a.

Chenjun Xiao, Yifan Wu, Jincheng Mei, Bo Dai, Tor Lattimore, Lihong Li, Csaba
Szepesvári, and Dale Schuurmans. On the Optimality of Batch Policy Optimization
Algorithms. In Proceedings of the 38th International Conference on Machine Learning,
pages 11362–11371. PMLR, 2021b.

Tengyang Xie and Nan Jiang. Q* Approximation Schemes for Batch Reinforcement
Learning: A Theoretical Comparison. In Proceedings of the Thirty-Sixth Conference
on Uncertainty in Artificial Intelligence, pages 550–559. PMLR, 2020.

Huan Xu and Shie Mannor. Parametric Regret in Uncertain Markov Decision Processes.
In Proceedings of the 48th IEEE Conference on Decision and Control (CDC) held jointly
with the 28th Chinese Control Conference, pages 3606–3613. IEEE, 2009.

https://www.hpl.hp.com/techreports/2003/HPL-2003-97R1.html
https://www.hpl.hp.com/techreports/2003/HPL-2003-97R1.html
https://arxiv.org/abs/2106.09973
https://arxiv.org/abs/2106.09973

124 BIBLIOGRAPHY

Qisong Yang, Thiago D Simão, Simon H Tindemans, and Matthijs T J Spaan. WCSAC:
Worst-Case Soft Actor Critic for Safety-Constrained Reinforcement Learning. In Pro-
ceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, pages 10639–
10646. AAAI Press, 2021.

Qisong Yang, Thiago D. Simão, Simon H. Tindemans, and Matthijs T. J. Spaan. Safety-
constrained reinforcement learning with a distributional safety critic. Machine Learn-
ing, pages 1–29, 2022.

Ting Yang, Liyuan Zhao, Wei Li, and Albert Y Zomaya. Reinforcement learning in sus-
tainable energy and electric systems: a survey. Annu. Rev. Control., 49:145–163, 2020a.

Tsung-Yen Yang, Justinian Rosca, Karthik Narasimhan, and Peter J Ramadge. Projection-
Based Constrained Policy Optimization. In Proceedings of the 8th International Con-
ference on Learning Representations, pages 1–11. OpenReview.net, 2020b.

Kok-Lim Alvin Yau, Junaid Qadir, Hooi Ling Khoo, Mee Hong Ling, and Peter Komisar-
czuk. A Survey on Reinforcement Learning Models and Algorithms for Traffic Signal
Control. ACM Comput. Surv., 50(34):1–38, 2017.

Haeun Yoo, Ha Eun Byun, Dongho Han, and Jay H Lee. Reinforcement learning for batch
process control: Review and perspectives. Annual Reviews in Control, 52:108–119,
2021.

Håkan L S Younes and Michael L Littman. PPDDL 1.0: An Extension to PDDL for
Expressing Planning Domains with Probabilistic Effects, October 2004. URL http:
//reports-archive.adm.cs.cmu.edu/anon/2004/CMU-CS-04-167.pdf.

Andrea Zanette. Exponential Lower Bounds for Batch Reinforcement Learning: Batch RL
can be Exponentially Harder than Online RL. In Proceedings of the 38th International
Conference on Machine Learning, pages 12287–12297. PMLR, 2021.

Ruohan Zhang, Faraz Torabi, Lin Guan, Dana H Ballard, and Peter Stone. Leveraging Hu-
man Guidance for Deep Reinforcement Learning Tasks. In Proceedings of the Twenty-
Eighth International Joint Conference on Artificial Intelligence, pages 6339–6346. ij-
cai.org, 2019.

Shun Zhang, Edmund H Durfee, and Satinder P Singh. Minimax-Regret Querying on
Side Effects for Safe Optimality in Factored Markov Decision Processes. In Proceedings
of the Twenty-Seventh International Joint Conference on Artificial Intelligence, pages
4867–4873. ijcai.org, 2018.

Wenshuai Zhao, Jorge Peña Queralta, and Tomi Westerlund. Sim-to-Real Transfer in
Deep Reinforcement Learning for Robotics: a Survey. In IEEE Symposium Series on
Computational Intelligence, pages 737–744. IEEE, 2020.

Liyuan Zheng and Lillian Ratliff. Constrained Upper Confidence Reinforcement Learn-
ing. In Proceedings of the 2nd Conference on Learning for Dynamics and Control, pages
620–629. PMLR, 2020.

http://reports-archive.adm.cs.cmu.edu/anon/2004/CMU-CS-04-167.pdf
http://reports-archive.adm.cs.cmu.edu/anon/2004/CMU-CS-04-167.pdf

ACKNOWLEDGEMENTS

This work would not have been possible without the support of many people. Therefore,
I would like to express my gratitude to them.

First and foremost, I would like to thank my daily supervisor Matthijs Spaan, who
has guided me during this journey. After I completed my master’s degree in Brazil, he
believed in my potential and gave me the opportunity to pursue a Ph.D. in the Nether-
lands. Matthijs was always extremely positive and generous. Meeting with him always
gave me calmness, confidence, and focus. He introduced me to multiple researchers,
which led to long-lasting collaborations. He also always incentivized me to embrace dif-
ferent opportunities. The day I arrived in the Netherlands, he lent me his old bike, which
helped me immediately feel like a local. This was just the first demonstration of his gen-
erosity, which has never stopped.

I would also like to thank my copromotor Rob Stikkelman. In our meetings, Rob
constantly challenged me to explain my work better. Over the years, this has been very
helpful, allowing me to present my research more clearly. Our discussions have also
helped me keep my research grounded.

Thanks to all the members of my defense committee, Robert Babuška, Bart De Schut-
ter, Frans Oliehoek, Aske Plaat, and Marek Petrik, for their interest in this work and the
insightful questions.

During this journey, I also had the pleasure of having multiple collaborators. In par-
ticular, I would like to thank Romain Laroche and Rémi Tachet des Combes for showing
me a bit of the research life outside of the academic environment during my internship
at Microsoft Research Montréal. I would also like to thank Nils Jansen for giving me
excellent feedback during our collaboration and, later, the opportunity to work in his
group, where I have been happily collaborating with Christoph Schmidl, Dennis Groß,
Marnix Suilen, Merlijn Krale, Thom Badings, and Yannick Hogewind. Finally, thanks to
my MSc thesis supervisor Leliane Nunes de Barros, for introducing me to the exciting
field of decision-making under uncertainty.

The Algorithmics group has always been a friendly, inclusive, and welcoming work-
place. I want to thank Cees Witteveen, Mathijs de Weerdt, and Neil Yorke-Smith for
building this atmosphere and the new faculty members Wendelin Böhmer, Anna Lukina,
Emir Demirović, and Sebastijan Dumančić for maintaining it. I would also like to thank
Sophie den Hartog, Kim Roos, and Shémara van der Zwet for their invaluable support.

Thanks to Canmanie, Greg, Qisong, Natalia, Yang, Lei, Longjian, Koos, Anna, Lau-
rens, Jesse, Stefan, and Ivo for our regular discussions over lunch and after work. Meeting
with such a wonderful group was an excellent reason to go to work since interacting with
them was like the sunshine I needed during the dark days of the dutch winter. A special
thanks to Erwin and Frits for showing me around the office and inspiring me to finish
this dissertation. I am also glad to see the new members of the Algorithmics group, Jun-
han, Moritz, Pascal, Noah, Joery, Eghonghon, Ksenija, Grigorii, and Oussama, bringing

125

126 ACKNOWLEDGEMENTS

new energy to the group and keeping this friendly working space.
I am lucky to have made good friends in the Netherlands and in Brazil. To Carmel,

Ashley, Taraneh, Yuri, Ebi, Robson, Ignasi, Kelvin, Jandson, Sabryna, João, Flavia, and
César, I would like to say thanks for all the good moments in person and virtually. These
moments have helped me unwind and take my head out of work. Moving to the Nether-
lands, I was also lucky to find the most awesome roommates I could only dream of in
Delfgauw. Thanks to Leo, Lissi, Trisha, and Michael for receiving me so well in a new
country and making me feel at home. And thanks to Edo, Charlie, Jonny, and Adrián for
making this home even more fun.

As for my family, I would like to address them in Portuguese now. Muito obrigado
a toda minha família pelo amor e suporte que me deram durante toda a minha vida,
mesmo nos vendo pessoalmente apenas uma vez por ano durante esse período eu sem-
pre senti seu afeto. Agradeço à tia Ângela e à tia Bene por me incentivarem a continuar
estudando. Aos meus pais Eliza e Acácio e meus irmãos Carla e Luis Gustavo obrigado
por sempre estarem ao meu lado. Finalmente, obrigado Mari por me inspirar diaria-
mente, a forma como você se adaptou a nossa nova vida foi incrível. Não tenho palavras
para descrever o quanto você me faz feliz. Vamos seguir juntos nessa nossa jornada.

LIST OF PUBLICATIONS

RELATED TO THIS THESIS

Thiago D Simão and Matthijs T J Spaan. Safe Policy Improvement with Baseline
Bootstrapping in Factored Environment. In Proceedings of the Thirty-Third AAAI
Conference on Artificial Intelligence, pages 4967–4974. AAAI Press, 2019.

Thiago D Simão and Matthijs T J Spaan. Structure Learning for Safe Policy Im-
provement. In Proceedings of the Twenty-Eighth International Joint Conference on
Artificial Intelligence, pages 3453–3459. ijcai.org, 2019.

Thiago D Simão. Safe and Sample-Efficient Reinforcement Learning Algorithms
for Factored Environments. In Proceedings of the Twenty-Eighth International
Joint Conference on Artificial Intelligence, pages 6460–6461. ijcai.org, 2019.

Thiago D Simão, Romain Laroche, and Rémi Tachet des Combes. Safe Policy Im-
provement with an Estimated Baseline Policy. In Proceedings of the 19th Interna-
tional Conference on Autonomous Agents and MultiAgent Systems, page 1269–1277.
IFAAMAS, 2020.

Thiago D Simão, Nils Jansen, and Matthijs T J Spaan. AlwaysSafe: Reinforcement
Learning Without Safety Constraint Violations During Training. In Proceedings of
the 20th International Conference on Autonomous Agents and MultiAgent Systems,
pages 1226–1235. IFAAMAS, 2021.

OTHER PEER-REVIEWED PUBLICATIONS

Ignasi Andrés, Leliane Nunes de Barros, Denis D. Mauá, and Thiago D. Simão.
When a Robot Reaches Out for Human Help. In Advances in Artificial Intelligence
- IBERAMIA, pages 277–289. Springer, 2018.

Qisong Yang, Thiago D Simão, Simon H Tindemans, and Matthijs T J Spaan. WCSAC:
Worst-Case Soft Actor Critic for Safety-Constrained Reinforcement Learning. In
Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, pages 10639–
10646. AAAI Press, 2021.

Qisong Yang, Thiago D. Simão, Simon H. Tindemans, and Matthijs T. J. Spaan.
Safety-constrained reinforcement learning with a distributional safety critic. Ma-
chine Learning, pages 1–29, 2022.

127

128 LIST OF PUBLICATIONS

Danial Kamran, Thiago D. Simão, Qisong Yang, Canmanie T. Ponnambalam, Jo-
hannes Fischer, Matthijs T. J. Spaan, and Martin Lauer. A Modern Perspective on
Safe Automated Driving for Different Traffic Dynamics Using Constrained Rein-
forcement Learning. In 25th IEEE International Conference on Intelligent Trans-
portation Systems (ITSC), pages 4017–4023. IEEE, 2022.

Marnix Suilen, Thiago D. Simão, David Parker, and Nils Jansen. Robust Anytime
Learning of Markov Decision Processes. In Advances in Neural Information Pro-
cessing Systems, volume 35. Curran Associates, Inc., 2022.

Thiago D. Simão, Marnix Suilen, and Nils Jansen. Safe Policy Improvement for
POMDPs via Finite-State Controllers. In Proceedings of the AAAI Conference on
Artificial Intelligence. AAAI Press, 2023.

	Summary
	Samenvatting
	Introduction
	Reliable Artificial Intelligence
	Reinforcement Learning: Promises & Challenges
	The Safety Challenge
	Alternative Criteria
	Safe Exploration

	Scope
	Reliability in Offline Reinforcement Learning
	Safety Constraints in Reinforcement Learning

	Research Goals
	Contributions
	Outline

	Background
	Markov Decision Processes
	Factored Markov Decision Processes
	Constrained Markov Decision Processes
	Reinforcement Learning
	Model Learning
	Model-based Exploration
	From Online to Offline

	Safe RL
	Alternative Criteria
	Safe Exploration

	Summary

	Safe Policy Improvement in Factored Environments
	Safety in Offline Reinforcement Learning
	Safe Policy Improvement
	Reliable Offline RL: An Overview
	Optimization Criterion
	SPI with Baseline Bootstrapping Algorithms

	Factored SPI with Known Structure
	Factored Policy-Based SPIBB
	Benefits of a Factored Representation
	Theoretical Analysis
	Empirical Analysis

	Structure Learning for Safe Policy Improvement
	The Algorithm
	Theoretical Analysis
	Empirical Analysis

	A Realistic Case Study
	Conclusions and Future Work

	Safe Policy Improvement with an Estimated Behavior Policy
	Approximate Safe Policy Improvement
	Baseline Estimates
	Algorithm and analysis
	Theorem 4 discussion

	Empirical Analysis
	Random finite MDPs
	Continuous MDPs

	Conclusions

	Safe Reinforcement Learning During Training
	Constrained Reinforcement Learning
	Efficiency Metrics
	Solving CMDPs with Optimism

	Abstraction for Expected Cost
	Cost-model Irrelevance
	A Cost-model-irrelevant Abstraction
	Planning with the Abstract CMDP

	Always Safe
	The Linear Program
	Policies
	The Algorithm
	Theory

	Empirical Results
	Setup
	Safety evaluation
	Dynamic constraint tightening evaluation
	Tight safety bounds
	Exploration efficiency
	Results discussion

	Related Work
	Conclusions

	Concluding Remarks
	Contributions
	Increasing Tractability
	Striving for Simplicity
	On the Gap between the Lab and the Real World

	Reflections
	Directions for Future Work
	Revisiting the Offline Reinforcement Learning
	New Constraints for Reinforcement Learning
	Alternative Sources of Safety Guarantees

	Final Remarks

	Acronyms
	Notation
	Bibliography
	Acknowledgements
	List of Publications

