
More for Less: Safe Policy Improvement
With Stronger Performance Guarantees

Patrick Wienhöft1,2 , Marnix Suilen3 , Thiago D. Simão3 ,
Clemens Dubslaff4,2 , Christel Baier1,2 and Nils Jansen3

1Department of Computer Science, Technische Universität Dresden, Dresden, Germany
2Centre for Tactile Internet with Human-in-the-Loop (CeTI)

3Department of Software Science, Radboud University, Nijmegen, The Netherlands
4Eindhoven University of Technology, Eindhoven, The Netherlands

{patrick.wienhoeft, christel.baier}@tu-dresden.de
{m.suilen, t.simao, n.jansen}@science.ru.nl

c.dubslaff@tue.nl

Abstract
In an offline reinforcement learning setting, the
safe policy improvement (SPI) problem aims to
improve the performance of a behavior policy ac-
cording to which sample data has been generated.
State-of-the-art approaches to SPI require a high
number of samples to provide practical probabilis-
tic guarantees on the improved policy’s perfor-
mance. We present a novel approach to the SPI
problem that provides the means to require less
data for such guarantees. Specifically, to prove
the correctness of these guarantees, we devise im-
plicit transformations on the data set and the un-
derlying environment model that serve as theo-
retical foundations to derive tighter improvement
bounds for SPI. Our empirical evaluation, using
the well-established SPI with baseline bootstrap-
ping (SPIBB) algorithm, on standard benchmarks
shows that our method indeed significantly reduces
the sample complexity of the SPIBB algorithm.

1 Introduction
Markov decision processes (MDPs) are the standard model
for sequential decision-making under uncertainty [Puterman,
1994]. Reinforcement learning (RL) solves such decision-
making problems, in particular when the environment dynam-
ics are unknown [Sutton and Barto, 1998].

In an online RL setting, an agent aims to learn a decision-
making policy that maximizes the expected accumulated re-
ward by interacting with the environment and observing feed-
back, typically in the form of information about the environ-
ment state and reward. While online RL has shown great
performance in solving hard problems [Mnih et al., 2015;
Silver et al., 2018], the assumption that the agent can always
directly interact with the environment is not always realistic.
In real-world applications such as robotics or healthcare, di-
rect interaction can be impractical or dangerous [Levine et
al., 2020]. Furthermore, alternatives such as simulators or
digital twins may not be available or insufficiently capture

the nuances of the real-world application for reliable learn-
ing [Ramakrishnan et al., 2020; Zhao et al., 2020].

Offline RL (or batch RL) [Lange et al., 2012] mitigates this
concern by restricting the agent to have only access to a fixed
data set of past interactions. As a common assumption, the
data set has been generated by a so-called behavior policy.
An offline RL algorithm aims to produce a new policy with-
out further interactions with the environment [Levine et al.,
2020]. Methods that can reliably improve the performance of
a policy are key in (offline) RL.

Safe policy improvement (SPI) algorithms address this
challenge by providing (probabilistic) correctness guarantees
on the reliable improvement of policies [Thomas et al., 2015;
Petrik et al., 2016]. These guarantees depend on the size of
the data set and usually adhere to a conservative bound on the
minimal amount of samples required. Since this bound often
turns out to be too large for practical applications of SPI, it
is instead turned into a hyperparameter (see, e.g., [Laroche et
al., 2019]). The offline nature of SPI prevents further data
collection, which steers the key requirements of SPI in prac-
tical settings: (1) exploit the data set as efficiently as possible
and (2) compute better policies from smaller data sets.

1.1 Contributions
Our contribution provides the theoretical foundations to im-
prove the understanding of SPI algorithms in general. Specif-
ically, in a general SPI setting, we can guarantee a higher per-
formance for significantly less data. Equivalently, we can al-
low the same amount of data and consequently provide signif-
icantly less performance guarantees. Our main technical con-
tribution is an transformation of the underlying MDP model
into a two-successor MDP (2sMDP) along with adjustments
to the data set, that allows us to prove these tighter bounds.
A 2sMDP is an MDP where each state-action pair has at
most two successors, hence limiting the branching factor of
an MDP to only two. These transformations preserve (the op-
timal) performance of policies and are reversible. In the con-
text of SPI these transformations are implicit, i.e., do not have
to be computed explicitly. Hence, we are able to apply stan-
dard SPI algorithms such as SPI with baseline bootstrapping

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

4406

MDP M

Two-successor
MDP M 2s

MLE-MDP M̃

Two-successor
MLE-MDP M̃ 2s

Equal performance
(this paper, Theorem 1).

Performance loss bounded by ζSPIBB

[Laroche et al., 2019].

Performance loss bounded
by ζ2s (this paper, Theorem 3),

or by ζβ (this paper, Theorem 4).

Equal performance
(this paper, Theorem 2).

Figure 1: Overview of our approach. The solid arrows indicate how the full derivation of the improvement guarantees is done, while the
dashed line indicates that the transformations are only used in the proofs and that in practice, we can immediately use ζ2s or ζβ as bounds.

(SPIBB) [Laroche et al., 2019], and use our novel improve-
ment guarantees without any algorithmic changes necessary,
as also illustrated in Figure 1.

Following the theoretical foundations for the MDP and
data set transformations (Section 4), we present two differ-
ent methods to compute the new performance guarantees
(Section 5). The first uses Weissman’s bound [Weissman et
al., 2003], as also used in, e.g., standard SPIBB, while the
second uses the inverse incomplete beta function [Temme,
1992]. Our experimental results show a significant reduction
in the amount of data required for equal performance guar-
antees (Section 6). Concretely, where the number of samples
required at each state-action pair of standard SPIBB grows
linearly in the number of states, our approach only grows log-
arithmic in the number of states for both methods. We also
demonstrate the impact on three well-known benchmarks in
practice by comparing them with standard SPIBB across mul-
tiple hyperparameters.

2 Preliminaries
Let X be a finite set. We denote the number of elements in
X by |X|. A discrete probability distribution over X is a
function µ : X → [0, 1] where

∑
x∈X µ(x) = 1. The set of

all such distributions is denoted by ∆(X). The L1-distance
between two probability distributions µ and σ is defined as
‖µ − σ‖1 =

∑
x∈X |µ(x) − σ(x)|. We write [m : n] for the

set of natural numbers {m, . . . , n} ⊂ N, and I[x=x′] for the
indicator function, returning 1 if x = x′ and 0 otherwise.

Definition 1 (MDP). A Markov decision process (MDP) is a
tuple M = (S,A, ι, P,R, γ), where S and A are finite sets of
states and actions, respectively, ι ∈ S an initial state, P : S×
A ⇀ ∆(S) is the (partial) transition function, R : S × A ⇀
[−Rmax, Rmax] is the reward function bounded by some known
value Rmax ∈ R, and γ ∈ (0, 1) ⊂ R is the discount factor.

We say that an action a is enabled in state s if P (s, a)
is defined. We write P (s′ | s, a) for the transition prob-
ability P (s, a)(s′), and PostM (s, a) for the set of suc-
cessor states reachable with positive probability from the
state-action pair (s, a) in M . A path in M is a finite
sequence 〈s1, a1, . . . , an−1, sn〉 ∈ (S × A)∗ × S where
si ∈ PostM (si−1, ai−1) for all i ∈ [2:n]. The prob-
ability of following a path 〈s1, a1, . . . , an−1, sn〉 in the
MDP M given a deterministic sequence of actions is writ-
ten as PM (〈s1, a1, . . . , an−1, sn〉) and can be computed by

repeatedly applying the transition probability function, i.e.,
PM (〈s1, a1, . . . , an−1, sn〉) =

∏n−1
i=1 P (si+1 | si, ai).

A memoryless stochastic policy for M is a function
π : S → ∆(A). The set of such policies is Π. The goal is
to find a policy maximizing the expected discounted reward

max
π∈Π

E

[∞∑
t=1

γtrt

]
,

where rt is the reward the agent collects at time t when fol-
lowing policy π in the MDP.

We write V πM (s) for the state-based value function of an
MDP M under a policy π. Whenever clear from context, we
omit M and π. The value of a state s in an MDP M is the
least solution of the Bellman equation and can be computed
by, e.g., value iteration [Puterman, 1994]. The performance
ρ(π,M) of a policy π in an MDP M is defined as the value
in the initial state ι ∈ S, i.e., ρ(π,M) = V πM (ι).

3 Safe Policy Improvement
In safe policy improvement (SPI), we are given an MDP M
with an unknown transition function, a policy πb, also known
as the behavior policy, and a data set D of paths in M under
πb. The goal is to derive a policy πI from πb and D that with
high probability 1−δ guarantees to improve πb onM up to an
admissible performance loss ζ. That is, the performance of
πI is at least that of πb tolerating an error of ζ:

ρ(πI ,M) ≥ ρ(πb,M)− ζ. (1)

3.1 Maximum Likelihood Estimation
We use maximum likelihood estimation (MLE) to derive an
MLE-MDP M̃ from the data set D. For a path ρ ∈ D, let
#ρ(s, a) and #ρ(s, a, s

′) be the number of (sequential) oc-
currences of a state-action pair (s, a) and a transition (s, a, s′)
in ρ, respectively. We lift this notation the level of the
data set D by defining #D(s, a) =

∑
ρ∈D#ρ(s, a) and

#D(s, a, s′) =
∑
ρ∈D#ρ(s, a, s

′).

Definition 2 (MLE-MDP). The maximum likelihood MDP
(MLE-MDP) of an MDP M = (S,A, ι, P,R, γ) and data set
D is a tuple M̃ = (S,A, ι, P̃ , R, γ) where S, ι, A,R, and γ
are as in M and the transition function is estimated from D:

P̃ (s′ | s, a) =
#D(s, a, s′)

#D(s, a)
.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

4407

Let e : S×A → R be an error function. We define ΞM̃e as
the set of MDPs M ′ that are close to M̃ , i.e., where for all
state-action pairs (s, a) the L1-distance between the transi-
tion function P ′(· | s, a) and P̃ (· | s, a) is at most e(s, a):

ΞM̃e = {M ′ | ∀(s, a).‖P ′(· | s, a)− P̃ (· | s, a)‖1 ≤ e(s, a)}.
SPI methods aim at defining the error function e in such a
way that ΞM̃e contains the true MDP M with high probability
1 − δ. Computing a policy that is an improvement over the
behavior policy for all MDPs in this set then also guarantees
an improved policy for the MDP M with high probability
1 − δ [Petrik et al., 2016]. The amount of data required to
achieve a ζSPI-approximately safe policy improvement with
probability 1−δ (recall Equation (1)) for all state-action pairs
has been established by Laroche et al. ([2019]) as

#D(s, a) ≥ NSPI
∧ =

8V 2
max

(ζSPI)2(1− γ)2
log

2|S||A|2|S|
δ

. (2)

Intuitively, if the data set D satisfies the constraint in Equa-
tion 2, the MLE-MDP estimated fromD will be close enough
to the unknown MDP M used to obtain D. To this end, it
would be likely that a policy in the MLE-MDP with better
performance will also have a better performance in M .

3.2 SPI with Baseline Bootstrapping
The constraint in Equation (2) has to hold for all state-action
pairs in order to guarantee a ζ-approximate improvement and
thus requires a large data set with good coverage of the entire
model. SPI with baseline bootstrapping (SPIBB) [Laroche
et al., 2019] relaxes this requirement by only changing the
behavior policy in those pairs for which the data set contains
enough samples and follows the behavior policy otherwise.
Specifically, state-action pairs with less than NSPIBB

∧ samples
are collected in a set of unknown state-action pairs U :

U = {(s, a) ∈ S ×A | #D(s, a) ≤ NSPIBB
∧ }.

SPIBB then determines an improved policy πI similar to
(standard) SPI, except that if (s, a) ∈ U , πI is required to
follow the behavior policy πb:

∀(s, a) ∈ U . πI(a | s) = πb(a | s).
Then, πI is an improved policy as in Equation (1), where
NSPIBB
∧ is treated as a hyperparameter and ζ is given by

ζSPIBB =
4Vmax
1− γ

√
2

NSPIBB
∧

log
2|S||A|2|S|

δ

− ρ(πI , M̃) + ρ(πb, M̃).

We can rearrange this equation to compute the number
of necessary samples for a ζSPIBB-approximate improvement.
As ρ(πI , M̃) is only known at runtime, we have to employ an
under-approximation ρ(πb, M̃) to a priori compute

NSPIBB
∧ =

32V 2
max

(ζSPIBB)2(1− γ)2
log

2|S||A|2|S|
δ

.

Thus, the sample size constraint NSPIBB
∧ grows approxi-

mately linearly in terms of the size of the MDP. The exponent

of the term 2|S| is an over-approximation of the maximum
branching factor of the MDP, since worst-case, the MDP can
be fully connected. In the following Section, we present our
approach to limit the branching factor of an MDP. After that,
we present two methods that exploit this limited branching
factor to derive improved sampling size constraints for SPI
that satisfy the same guarantees.

4 Tighter Improvement Bounds for SPI
In the following, we present the technical construction of two-
successor MDPs and the data set transformation that allows
us to derive the tighter performance guarantees in SPI.

4.1 From MDP to Two-Successor MDP
A two-successor MDP (2sMDP) is an MDP M2s where each
state-action pair (s, a) has at most two possible successors
states, i.e., |PostM2s(s, a)| ≤ 2. To transform an MDP
M = (S,A, ι, P,R, γ) into a 2sMDP, we introduce a set
of auxiliary states Saux along with the main states S of the
MDP M . Further, we include an additional action τ and
adapt the probability and reward functions towards a 2sMDP
M2s = (S ∪ Saux, A ∪ {τ}, ι, P 2s, R2s, γ2s).

For readability, we now detail the transformation for a fixed
state-action pair (s, a) with three or more successors. The
transformation of the whole MDP follows from repeatedly
applying this transformation to all such state-action pairs.

We enumerate the successor states of (s, a), i.e.,
PostM (s, a) = {s1, . . . , sk} and define pi = P (si | s, a) for
all i = 1, . . . , k. Further, we introduce k − 2 auxiliary states
Ss,aaux = {x2, . . . , xk−1}, each with one available action with
a binary outcome. Concretely, the two possible outcomes in
state xi are “move to state si” or “move to one of the states
si+1, . . . , sk” where the latter is represented by moving to an
auxiliary state xi+1, unless i = k − 1 in which case we im-
mediately move to sk. Formally, the new transition function
P 2s(· | s, a) is:

P 2s(s1 | s, a) = p1, P 2s(x2 | s, a) = 1− p1.

For the transition function P 2s in the auxiliary states we de-
fine a new action τ that will be the only enabled action in
these states. For i > 1, the transition function P 2s is then

P 2s(si |xi, τ) =
pi

1− (p1 + · · ·+ pi−1)
,

P 2s(xi+1 |xi, τ, i < k − 1) = 1− pi
1− (p1 + · · ·+ pi−1)

,

P 2s(sk |xk−1, τ) = 1− pk
1− (pi−1 + pk)

.

An example of this transformation is shown in Figure 2,
where Figure 2a shows the original MDP and Figure 2b
shows the resulting 2sMDP. As we introduce |Post(s, a)|
auxiliary states for a state-action pair (s, a), and k ≤ |S|
in the worst-case of a fully connected MDP, we can bound
the number of states in the 2sMDP by |S ∪ Saux| ≤ |S| +
|S||A|(|S| − 2) ≤ |S|2|A|. Note that we did not specify a
particular order for the enumeration of the successor states.
Further, other transformations utilizing auxiliary states with a
different structure (e.g., a balanced binary tree) are possible.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

4408

s0

s1

s2

s3

s4

0.2

0.2

0.1

0.5

0.8

0.2

(a) MDP M .

s0

s1

x1

s2

x2

s3

s4

0.5

0.4

0.6

0.5 0.6
7

0.33

0.8

0.2

(b) 2sMDP M 2s.

Figure 2: Example for a transformation from an MDP to a 2sMDP, where the single and double arc indicate different actions.

However, neither the structure of the auxiliary states, nor the
order of successor states changes the total number of states in
the 2sMDP, which is the deciding factor for the application of
this transformation in the context of SPI algorithms.

The extension of the reward function is straightforward,
i.e., the agent receives the same reward as in the original MDP
when in main states and no reward when in auxiliary states:

R2s(s, a) =

{
R(s, a) s ∈ S, a ∈ A,
0 otherwise.

Any policy π for the MDPM can be extended into a policy
π2s for the 2sMDP M2s by copying π for states in S and
choosing τ otherwise:

π2s(a | s) =

{
π(a | s) s ∈ S,
I[a = τ] s ∈ Saux.

Finally, in order to preserve discounting correctly, we in-
troduce a state-dependent discount factor γ2s, such that dis-
counting only occurs in the main states, i.e.,

γ2s(s) =

{
γ s ∈ S,
1 s ∈ Saux.

This yields the following value function for the 2sMDP M2s:

V π
2s

M2s(s) =
∑
a∈A

π2s(a | s)
(
R2s(s, a)

+ γ2s(s)
∑
s′∈S

P 2s(s′ | s, a)V π
2s

M2s(s′)
)
.

The performance of policy π2s onM2s uses the value function
defined above and is denoted by ρ2s(π2s,M2s) = V π

2s

M2s(ι), for
the initial state ι ∈ S. Our transformation described above,
together with the adjusted value function, indeed preserves
the performance of the original MDP and policy:
Theorem 1 (Preservation of transition probabilities). For ev-
ery transition (s, a, s′) in the original MDP M , there exists a
unique path 〈s, a, x2, τ, . . . , xi, τ, s

′〉 in the 2sMDPM2s with
the same probability. That is,

PM (〈s, a, s′〉) = PM2s(〈s, a, x2, τ, . . . , xi, τ, s
′〉).

Wienhöft et al. [2023] prove all theoretical results.
Corollary 1 (Preservation of performance). Let M be an
MDP, π a policy for M , and M2s the two-successor MDP
with policy π2s constructed from M and π as described
above. Then ρ(π,M) = ρ2s(π2s,M2s).

4.2 Data-set Transformation
In the previous section, we discussed how to transform an
MDP into a 2sMDP. However, for SPI we do not have ac-
cess to the underlying MDP, but only to a data set D and the
behavior policy πb used to collect this data. In this section,
we present a transformation similar to the one from MDP to
2sMDP, but now for the data set D. This data set transfor-
mation allows us to estimate a 2sMDP from the transformed
data via maximum likelihood estimation (MLE).

We again assume a data set D of observed states and ac-
tions of the form D = 〈st, at〉t∈[1:m] from an MDP M .
We transform the data set D into a data set D2s that we
use to define a two-successor MLE-MDP M̃2s. Each sample
(st, at, st+1) in D is transformed into a set of samples, each
corresponding to a path from st to st+1 via states in Saux in
M2s. Importantly, the data set transformation only relies on
D and not on any additional knowledge about M .

Similar to the notation in Section 3, let #D(x) denote
the number of times x occurs in D. For each state-action
pair (s, a) ∈ S × A we denote its successor states in M̃ as
PostM̃ (s, a) = {si |#D(s, a, si) > 0}, which are again enu-
merated by {s1, . . . , sk}. Similarly as for the MDP transfor-
mation, we define PostM̃2s(s, a) = PostM̃ (s, a) if k ≤ 2
and PostM̃2s(s, a) = {s1, x2} otherwise. For auxiliary states
xi ∈ Ss,aaux , we define PostM̃2s(xi, τ) = {si, xi+1} for
i < k−1 and PostM̃2s(xk−1, τ) = {sk−1, sk}. We then de-
fine the transformed data set D2s from D for each s ∈ S and
s′ ∈ PostM̃2s(s, a) as follows:

#D2s(s, a, s′) =


#D(s, a, s′) s′ ∈ S,
k∑
j=2

#D(s, a, sj) s′ = x2 ∈ Ss,aaux ,

0 otherwise.

Further, for each xi ∈ Ss,aaux and s′ ∈ PostM̃2s(s, a)

#D2s(xi, τ, s
′) =


#D(s, a, s′) s′ ∈ S,
k∑

j=i+1

#D(s, a, sj) s′ = xi+1 ∈ Ss,aaux ,

0 otherwise.

The following preservation results for data generated MLE-
MDPs are in the line of Theorem 1 and Corollary 1. See Fig-
ure 1 for an overview of the relationships between theorems.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

4409

Theorem 2 (Preservation of estimated transition probabili-
ties). Let D be a data set and D2s be the data set obtained
by the transformation above. Further, let M̃ and M̃2s be
the MLE-MDPs constructed from D and D2s, respectively.
Then for every transition (s, a, s′) in M̃ there is a unique path
〈s, a, x2, τ, . . . , xi, τ, s

′〉 in M̃2s with the same probability:

PM̃ (〈s, a, s′〉) = PM̃2s(〈s, a, x2, τ, . . . , xi, τ, s
′〉).

Corollary 2 (Preservation of estimated performance). Let M̃
and M̃2s be the MLE-MDPs as above, constructed from D
andD2s, respectively. Further, let π̃ be an arbitrary policy on
M̃ and π̃2s the policy that extends π for M̃2s by choosing τ
in all auxiliary states. Then ρ(π̃, M̃) = ρ2s(π̃2s, M̃2s).

We want to emphasize that while D2s may contain more
samples than D, it does not yield any additional infor-
mation. Rather, instead of viewing each transitions sam-
ple as an atomic data point, in D2s transition samples
are considered like a multi-step process. E.g, The sam-
ple (s, a, s3) ∈ D would be transformed into the samples
{(s, a, x2), (x2, τ, x3), (x3, τ, s3)} ∈ D2s which in the con-
struction of the MLE-MDP are used to estimate the prob-
abilities P (s′ 6= s1 | s, a), P (s′ 6= s2 | s, a, s′ 6= s1) and
P (s′ = s3 | s, a, s′ 6= s1, s

′ 6= s2), respectively. The prob-
abilities of these events are mutually independent, but when
multiplied give exactly P (s3 | s, a).

5 SPI in Two-Successor MDPs
In this section, we discuss how SPI can benefit from two-
successor MDPs as constructed following our new transfor-
mation presented in Section 4. The dominating term in the
bound N obtained by [Laroche et al., 2019] is the branching
factor of the MDP, which, without any prior information, has
to necessarily be over-approximated by |S| (cf. Section 3.2).
We use our transformation above to bound the branching fac-
tor to k = 2, which allows us to provide stronger guaran-
tees with the same data set (or conversely, require less data
to guarantee a set maximum performance loss). Note that
bounding the branching factor by any other constant can be
achieved by a similar transformation as in Section 4, but
k = 2 leads to an optimal bound [Wienhöft et al., 2023].

Let M̃ and M̃2s be the MLE-MDPs inferred from data sets
D and D2s, respectively. Further, let π� and π2s

� denote the
optimal policies in these MLE-MDPs, constrained to the set
of policies that follow πb for state-action pairs (s, a) ∈ U .
Note that these optimal policies can easily be computed us-
ing, e.g., standard value iteration. First, we show how to
improve the admissible performance loss ζ in SPI on two-
successor MDPs.

Lemma 1. Let M2s be a two-successor MDP with behav-
ior policy πb. Then, π2s

� is a ζ-approximately safe policy im-
provement over πb with high probability 1− δ, where:

ζ =
4Vmax
1− γ

√
2

N∧
log

8|S||A|
δ

+ ρ̃2s,

with ρ̃2s = −ρ2s(π2s
� , M̃

2s) + ρ2s(πb, M̃
2s).

For a general MDP M , we can utilize this result by first
applying the transformation from Section 4.1.
Theorem 3 (Weissman-based tighter improvement guaran-
tee). Let M be an MDP with behavior policy πb. Then, π� is
a ζ2s-approximate safe policy improvement over πb with high
probability 1− δ, where:

ζ2s =
4Vmax
1− γ

√
2

N2s
∧

log
8|S|2|A|2

δ
−ρ(π�, M̃)+ρ(πb, M̃).

As for ζSPIBB, we can rearrange the equation to compute
the number of necessary samples for a ζ2s-safe improvement:

N2s
∧ =

32V 2
max

(ζ2s)2(1− γ)2
log

8|S|2|A|2
δ

.

Note that ζ2s and N2s
∧ only depend on parameters of M and

policy performances on M̃ , which follows from Corollary 2
yielding ρ(π�, M̃) = ρ2s(π�, M̃2s). Hence, it is not neces-
sary to explicitly compute the transformed MLE-MDP M̃2s.

5.1 Uncertainty in Two-Successor MDPs
So far, the methods we outlined relied on a bound of the L1-
distance between a probability vector and its estimate based
on a number of samples [Weissman et al., 2003]. In this sec-
tion, we outline a second method to tighten this bound for
two-successor MDP and how to apply it to obtain a smaller
approximation error ζβ for a fixed Nβ

∧ .
Formally, given a 2sMDP M2s and an error tolerance δ,

we construct an error function e : S × A → R that en-
sures with probability 1 − δ that ‖P (s, a) − P̂ (s, a)‖1 ≤
e(s, a) for all (s, a). To achieve this, we distribute δ uni-
formly over all states to obtain δT = δ/|S|, independently
ensuring that for each state-action pair (s, a) the condition
‖P (s, a) − P̂ (s, a)‖1 ≤ e(s, a) is satisfied with probability
at least 1− δT .

We now fix a state-action pair (s, a). Since we are deal-
ing with a two-successor MDP, there are only two successor
states, s1 and s2. To bound the error function, we view each
sample of action a in state s as a Bernoulli trial. As short-
hand notation, we define p = P (s, a, s1), and consequently
we have 1 − p = P (s, a, s2). Using a uniform prior over p
and given a data setD in which (s, a, s1) occurs k1 times and
(s, a, s2) occurs k2 times, the posterior probability over p is
given by a beta distribution with parameters k1+1 and k2+1,
i.e., Pr(p | D) ∼ B(k1+1, k2+1) [Jaynes, 2003]. We can ex-
press the error function in terms of the probability of p being
contained in a given interval [p, p] as e(s, a) = p− p.

The task that remains is to find such an interval [p, p] for
which we can guarantee with probability δT that p is con-
tained within it. Formally, we can express this via the incom-
plete regularized beta function I , which in turn is defined as
the cumulative density function of the beta distribution B:

P(p ∈ [p, p]) = Ip,p(k1+1, k2+1).

We show that we can define the smallest such interval in terms
of the inverse incomplete beta function [Temme, 1992], de-
noted as I−1

δ .

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

4410

Lemma 2. Let k ∼ Bin(n, p) be a random variable ac-
cording to a binomial distribution. Then the smallest interval
[p, p] for which

P
(
p ∈

[
p, p
])
≥ 1− δT

holds, has size

p− p ≤ 1− 2I−1
δT/2

(n
2

+ 1,
n

2
+ 1
)
.

Next, we show how to utilize this bound for the interval
size in MDPs with arbitrary topology. The core idea is the
same as in Theorem 3: We transform the MDP into a 2sMDP
and apply the error bound e(s, a) = p− p from Lemma 2.

Theorem 4 (Beta-based tighter improvement guarantee). Let
M be an MDP with behavior policy πb. Then, π� is a ζβ-
approximate safe policy improvement over πb with high prob-
ability 1− δ, where:

ζβ =
4Vmax
1− γ

(
1− I−1

δT/2

(
Nβ
∧

2
+ 1,

Nβ
∧

2
+ 1

))
+ ρ̃,

with δT = δ
|S|2|A|2 , and ρ̃ = −ρ(π�, M̃) + ρ(πb, M̃).

There is no closed formula to directly compute Nβ
∧ for a

given ζβ . However, for a given admissible performance loss
ζ, we can perform a binary search to obtain the smallest nat-
ural number Nβ

∧ such that ζβ ≤ ζ given in Theorem 4.

Comparison of Different N∧. In the context of SPI, finding
an N∧ that is as small as possible while still guaranteeing ζ-
approximate improvement is the main objective. An overview
of the different ζ andN∧ that are available is given in Table 1.
Comparing the equations for different N∧, we immediately
see that N2s

∧ ≤ NSPIBB
∧ if and only if 2|S| ≥ 4|S||A|. This

means the only MDPs where standard SPIBB outperforms
our 2sMDP approach are environments with a small state-
space but a large action-space. By Lemma 2, we have that
the error term e(s, a) used to compute ζβ is minimal in the
2sMDP1, and in particular it is smaller than the error term
used to compute ζ2s. Thus we always have Nβ

∧ ≤ N2s
∧ .

In case 2|S| < 4|S||A| it is also possible to compute both
NSPIBB
∧ , and Nβ

∧ and simply choose the smaller one.

6 Implementation and Evaluation
We provide an evaluation2 of our approach from two differ-
ent perspectives. First, a theoretical evaluation of how the
different N∧ depend on the size of a hypothetical MDP, and
second, a practical evaluation to investigate how smaller N∧
values translate to the performance of the improved policies.

1Technically, Lemma 2 allows for arbitrary parameters while the
SPIBB algorithm only allows integers for the number of samples,
and thus integer parameters in the inverse beta function, so ζβ is only
minimal for evenNβ

∧ . However, we can easily adapt the equation for
odd Nβ

∧ by replacing Nβ
∧ by Nβ

∧ − 1 and Nβ
∧ + 1, respectively.

2Code available at https://github.com/LAVA-LAB/improved spi.

104 107

|S|

0

5

×108

N2s
∧

Nβ
∧

NSPIBB
∧

(a) NSPIBB
∧ , N 2s

∧ and Nβ
∧ .

104 107

|S|

0

2

4

×107

N2s
∧

Nβ
∧

(b) N 2s
∧ and Nβ

∧ .

Figure 3: Required number of samples for different |S| with |A| =
4, Vmax = 1, γ = 0.95, δ = 0.1 and ζ = 0.1.

6.1 Example Comparison of Different N∧

To render the theoretical differences between the possibleN∧
discussed at the end of Section 5 more tangible, we now give
a concrete example.

We assume a hypothetical MDP with |A| = 4, Vmax = 1,
γ = 0.95, and SPIBB parameters δ = 0.1 and ζ = 0.1.
For varying sizes of the state-space, we compute all three
sample size constraints: NSPIBB

∧ , N2s
∧ , and Nβ

∧ . The results
are shown in Figure 3, where Figure 3a shows the full plot
and Figure 3b provides an excerpt to differentiate between
the N2s

∧ and Nβ
∧ plots by scaling down the y-axis. Note that

the x-axis, the number of states in our hypothetical MDP, is
on a log-scale. We see that NSPIBB

∧ grows linearly with the
number of states, whereas N2s

∧ and Nβ
∧ are logarithmic in the

number of states. Further, we note that Nβ
∧ is significantly

below N2s
∧ , which follows from Lemma 1. Finally, the differ-

ence between NSPIBB
∧ and N2s

∧ is for small MDPs of around a
hundred states already a factor 10.

Discussion. While we show that a significant reduction of
the required number of samples per state-action pair N∧ is
possible via our two approaches, we note that even for small
MDPs (e.g., |S| = 100) we still need over 10 million sam-
ples per state-action pair to guarantee that an improved pol-
icy is safe w.r.t. the behavior policy. That is, with probability
1− δ = 0.9, an improved policy will have an admissible per-
formance loss of at most ζ = 0.1, which is infeasible in prac-
tice. Nevertheless, a practical evaluation of our approaches is
possible taking on a different perspective, which we address
in the next section.

6.2 Evaluation in SPIBB

We integrate our novel results for computing ζ2s, ζβ , N2s
∧ , and

Nβ
∧ into the implementation of SPIBB [Laroche et al., 2019].

Benchmarks. We consider two standard benchmarks used
in SPI and one other well-known MDP: the 25-state Grid-
world proposed by Laroche et al. [2019], the 25-state Wet
Chicken benchmark [Hans and Udluft, 2009], which was used
to evaluate SPI approaches by Scholl et al. [2022], and a 376-
state instance of Resource Gathering proposed by Barrett and
Narayanan [2008].

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

4411

https://github.com/LAVA-LAB/improved_spi

Method Admissible performance loss ζ Number of samples N∧

Standard SPI
[Petrik et al., 2016] ζSPI =

2γVmax
1− γ

√
2

NSPI
∧

log
2|S||A|2|S|

δ
NSPI
∧ =

8V 2
max

ζSPI2(1− γ)2
log

2|S||A|2|S|
δ

(?)

Standard SPIBB
[Laroche et al., 2019] ζSPIBB =

4Vmax
1− γ

√
2

NSPIBB
∧

log
2|S||A|2|S|

δ
+ ρ̃ NSPIBB

∧ =
32V 2

max

ζSPIBB2
(1− γ)2

log
2|S||A|2|S|

δ

Two-Successor SPIBB
(Theorem 3) ζ2s =

4Vmax
1− γ

√
2

N2s
∧

log
8|S|2|A|2

δ
+ ρ̃ N2s

∧ =
32V 2

max

(ζ2s)2(1− γ)2
log

8|S|2|A|2
δ

Inverse beta SPIBB
(Theorem 4) ζβ =

4Vmax
1− γ

(
1− 2I−1

δT/2

(
Nβ
∧

2
+1,

Nβ
∧

2
+1

))
+ ρ̃

No closed formula available
(use binary search to compute)

Table 1: Overview of the different ζ and N∧ we obtain, where δT = δ
|S|2|A|2 and ρ̃ = −ρ(π�, M̃) + ρ(πb, M̃) is the difference in

performance between optimal and behavior policy on the MLE-MDP. (?) Standard SPI requires at leastNSPI
∧ samples in all state-action pairs.

Metr ic: Mean 10%-CVaR 1%-CVaR

101 103 105

|D|

0.2

0.4

0.6

E
xp

ec
te

d
R

et
ur

n

(a) NSPIBB
∧ = 100, N 2s

∧ = 55, Nβ
∧ = 27.

101 103 105

|D|

0.2

0.4

0.6

E
xp

ec
te

d
R

et
ur

n

(b) NSPIBB
∧ = 200, N 2s

∧ = 110, Nβ
∧ = 67.

101 103 105

|D|

0.2

0.4

0.6

E
xp

ec
te

d
R

et
ur

n

(c) NSPIBB
∧ = 400, N 2s

∧ = 219, Nβ
∧ = 146.

Figure 4: Safe policy improvement on the Gridworld environment.

Behavior policy. For the Gridworld, we use the same be-
havior policy as [Laroche et al., 2019]. For the Wet Chicken
environment, we use Q-Learning with a softmax function to
derive a behavior policy. The behavior policy of Resource
Gathering was derived from the optimal policy by selecting
each non-optimal action with a probability of 1e-5.

Methodology. Recall that in the standard SPIBB approach,
N∧ is used as a hyperparameter, since the actual N∧ for rea-
sonable δ and ζ are infeasible. While our methods improve
significantly onN∧, the values we obtain are still infeasible in
practice, as discussed in Section 6.1. We still use NSPIBB

∧ as a
hyperparameter, and then run the SPIBB algorithm and com-
pute the resulting ζSPIBB. This ζSPIBB is consequently used to
compute the values N2s

∧ and Nβ
∧ that ensure the same perfor-

mance loss. We then run SPIBB again with these two values
for N∧. As seen in the previous experiment, and detailed at
the end of Section 5, for most MDPs – including our exam-
ples – we have Nβ

∧ ≤ N2s
∧ ≤ NSPIBB

∧ for a fixed ζ.

Evaluation metrics. For each data set size, we repeat each
experiment 1000 times and report the mean performance of
the learned policy, as well as the 10% and 1% conditional
value at risk (CVaR) values [Rockafellar and Uryasev, 2000],
indicating the mean performance of the worst 10% and 1%
runs. To give a complete picture, we also include the per-

formance of basic RL (dynamic programming on the MLE-
MDP [Sutton and Barto, 1998]), the behavior policy πb, and
the optimal policy π∗ of the underlying MDP.

Results. We present the results for the Gridworld, Wet
Chicken, and Resource Gathering environments for three dif-
ferent hyperparameters NSPIBB

∧ in Figures 4, 5, and 6, respec-
tively. In all instances, we see similar and improved behav-
iors as we presumed by sharpening the sampling bounds with
our new approaches. Smaller values for N∧ typically require
smaller data sets for a policy to start improving, and this is
precisely what our methods set out to do. In particular, we
note that our methods (2S and Beta) are quicker to converge to
an optimal policy than standard SPIBB. Beta is, as expected,
the fastest, and starts to improve over the behavior policy for
data sets about half the size compared to SPIBB in the Grid-
world. Further, while theoretically, the factor between the
different N∧ does not directly translate to the whole data set
size, we see that in practice on all three benchmarks this is
roughly the case. Finally, we note that Basic RL is unreliable
compared to the SPI methods, as seen by the CVaR values be-
ing significantly below the baseline performance for several
data set sizes in all three environments. This is as expected
and in accordance with well-established results.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

4412

Metr ic: Mean 10%-CVaR 1%-CVaR

101 103 105

|D|

10

20

30

40

E
xp

ec
te

d
R

et
ur

n

(a) NSPIBB
∧ = 60, N 2s

∧ = 34, Nβ
∧ = 10.

101 103 105

|D|

10

20

30

40

E
xp

ec
te

d
R

et
ur

n

(b) NSPIBB
∧ = 120, N 2s

∧ = 67, Nβ
∧ = 36.

101 103 105

|D|

10

20

30

40

E
xp

ec
te

d
R

et
ur

n

(c) NSPIBB
∧ = 180, N 2s

∧ = 101, Nβ
∧ = 61.

Figure 5: Safe policy improvement on the Wet Chicken environment.

101 103 105

|D|

0

5

10

15

20

E
xp

ec
te

d
R

et
ur

n

(a) NSPIBB
∧ = 600, N 2s

∧ = 43, Nβ
∧ = 12.

101 103 105

|D|

0

5

10

15

20
E

xp
ec

te
d

R
et

ur
n

(b) NSPIBB
∧ = 800, N 2s

∧ = 57, Nβ
∧ = 25.

101 103 105

|D|

0

5

10

15

20

E
xp

ec
te

d
R

et
ur

n

(c) NSPIBB
∧ = 1000, N 2s

∧ = 71, Nβ
∧ = 37.

Figure 6: Safe policy improvement on the Resource Gathering environment.

7 Related Work
A variant of our transformation from MDP to 2sMDP was in-
troduced by Mayr and Munday [2023], utilizing binary trees
built from auxiliary states as gadgets. Similar to our con-
struction, Junges et al. [2018] transform a partially observ-
able MDP (POMDP) [Kaelbling et al., 1998; Spaan, 2012]
into a simple POMDP, where each state has either one action
choice, and an arbitrary number of successor states, or where
there are multiple actions available but each action has a sin-
gle successor state. The same transformation was applied to
uncertain POMDPs [Cubuktepe et al., 2021].

Besides the main approaches to SPI mentioned in Sec-
tion 3, there are a number of other noteworthy works in this
area. SPIBB has been extended to soft baseline bootstrapping
in [Nadjahi et al., 2019], where instead of either following the
behavior policy or the optimal policy in the MLE-MDP in a
state-action pair, randomization between the two is applied.
However, the theoretical guarantees of this approach rely on
an assumption that rarely holds [Scholl et al., 2022].

Incorporating structural knowledge of the environment has
been shown to improve the sample complexity of SPI algo-
rithms [Simão and Spaan, 2019a; Simão and Spaan, 2019b].
It is also possible to deploy the SPIBB algorithm in problems
with large state space using MCTS [Castellini et al., 2023].
For a more detailed overview of SPI approaches and an em-
pirical comparison between them, see [Scholl et al., 2022].
For an overview of how these algorithms scale in the number
of states, we refer to [Brandfonbrener et al., 2022].

Other related work investigated how to relax some of the

assumptions SPI methods make. In [Simão et al., 2020], a
method for estimating the behavior policy is introduced, re-
laxing the need to know this policy. Finally, a number of
recent works extend the scope and relax common assump-
tions by introducing SPI in problems with partial observabil-
ity [Simão et al., 2023], non-stationary dynamics [Chandak
et al., 2020], and multiple objectives [Satija et al., 2021].

Finally, we note that SPI is a specific offline RL prob-
lem [Levine et al., 2020], which has seen significant ad-
vances recently [Kidambi et al., 2020; Yu et al., 2020;
Kumar et al., 2020; Smit et al., 2021; Yu et al., 2021;
Rigter et al., 2022]. While these approaches may be appli-
cable to high dimensional problems such as control tasks and
problems with large observation space [Fu et al., 2020], they
often ignore the reliability aspect of improving over a base-
line policy, as SPI algorithms do. Nevertheless, it remains a
challenge to bring SPI to high-dimensional problems.

8 Conclusion
We presented a new approach to safe policy improvement that
reduces the required size of data sets significantly. We derived
new performance guarantees and applied them to state-of-the-
art approaches such as SPIBB. Specifically, we introduced a
novel transformation to the underlying MDP model that lim-
its the branching factor, and provided two new ways of com-
puting the admissible performance loss ζ and the sample size
constraint N∧, both exploiting the limited branching factor in
SPI(BB). This improves the overall performance of SPI algo-
rithms, leading to more efficient use of a given data set.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

4413

Contribution Statement
Patrick Wienhöft and Marnix Suilen share first authorship,
contributing equally to the development and implementation
of the method. The other authors contributed with discus-
sions, ideas, and the presentation of the method.

Acknowledgments
The authors were partially supported by the DFG through
the Cluster of Excellence EXC 2050/1 (CeTI, project ID
390696704, as part of Germany’s Excellence Strategy), the
TRR 248 (see https://perspicuous-computing.science, project
ID 389792660), the NWO grants OCENW.KLEIN.187
(Provably Correct Policies for Uncertain Partially Observable
Markov Decision Processes) and NWA.1160.18.238 (Pri-
maVera), and the ERC Starting Grant 101077178 (DEUCE).

References
[Barrett and Narayanan, 2008] Leon Barrett and Srini

Narayanan. Learning all optimal policies with multiple
criteria. In ICML, pages 41–47. ACM, 2008.

[Brandfonbrener et al., 2022] David Brandfonbrener, Remi
Tachet des Combes, and Romain Laroche. Incorporating
explicit uncertainty estimates into deep offline reinforce-
ment learning. arXiv preprint arXiv:2206.01085, 2022.

[Castellini et al., 2023] Alberto Castellini, Federico Bianchi,
Edoardo Zorzi, Thiago D. Simão, Alessandro Farinelli,
and Matthijs T. J. Spaan. Scalable Safe Policy Improve-
ment via Monte Carlo Tree Search. In ICML, 2023.

[Chandak et al., 2020] Yash Chandak, Scott M. Jordan,
Georgios Theocharous, Martha White, and Philip S.
Thomas. Towards safe policy improvement for non-
stationary MDPs. In NeurIPS, pages 9156–9168. Curran
Associates, Inc., 2020.

[Cubuktepe et al., 2021] Murat Cubuktepe, Nils Jansen, Se-
bastian Junges, Ahmadreza Marandi, Marnix Suilen, and
Ufuk Topcu. Robust finite-state controllers for uncertain
POMDPs. In AAAI, pages 11792–11800. AAAI Press,
2021.

[Fu et al., 2020] Justin Fu, Aviral Kumar, Ofir Nachum,
George Tucker, and Sergey Levine. D4rl: Datasets for
deep data-driven reinforcement learning. arXiv preprint
arXiv:2004.07219, 2020.

[Hans and Udluft, 2009] Alexander Hans and Steffen Ud-
luft. Efficient uncertainty propagation for reinforcement
learning with limited data. In ICANN (1), pages 70–79.
Springer, 2009.

[Jaynes, 2003] E. T. Jaynes. Probability Theory: The Logic
of Science. Cambridge University Press, 2003.

[Junges et al., 2018] Sebastian Junges, Nils Jansen, Ralf
Wimmer, Tim Quatmann, Leonore Winterer, Joost-Pieter
Katoen, and Bernd Becker. Finite-state controllers of
POMDPs using parameter synthesis. In UAI, pages 519–
529. AUAI Press, 2018.

[Kaelbling et al., 1998] Leslie Pack Kaelbling, Michael L.
Littman, and Anthony R. Cassandra. Planning and acting
in partially observable stochastic domains. Artif. Intell.,
101(1-2):99–134, 1998.

[Kidambi et al., 2020] Rahul Kidambi, Aravind Rajeswaran,
Praneeth Netrapalli, and Thorsten Joachims. MOReL:
Model-based offline reinforcement learning. In NeurIPS,
pages 21810–21823. Curran Associates, Inc., 2020.

[Kumar et al., 2020] Aviral Kumar, Aurick Zhou, George
Tucker, and Sergey Levine. Conservative Q-learning for
offline reinforcement learning. In NeurIPS, pages 1179–
1191. Curran Associates, Inc., 2020.

[Lange et al., 2012] Sascha Lange, Thomas Gabel, and Mar-
tin A. Riedmiller. Batch reinforcement learning. In Rein-
forcement Learning, volume 12 of Adaptation, Learning,
and Optimization, pages 45–73. Springer, 2012.

[Laroche et al., 2019] Romain Laroche, Paul Trichelair, and
Remi Tachet des Combes. Safe policy improvement
with baseline bootstrapping. In ICML, pages 3652–3661.
PMLR, 2019.

[Levine et al., 2020] Sergey Levine, Aviral Kumar, George
Tucker, and Justin Fu. Offline reinforcement learning: Tu-
torial, review, and perspectives on open problems. arXiv
preprint arXiv:2005.01643, 2020.

[Mayr and Munday, 2023] Richard Mayr and Eric Munday.
Strategy Complexity of Point Payoff, Mean Payoff and To-
tal Payoff Objectives in Countable MDPs. Logical Meth-
ods in Computer Science, Volume 19, Issue 1, March 2023.

[Mnih et al., 2015] Volodymyr Mnih, Koray Kavukcuoglu,
David Silver, Andrei A. Rusu, Joel Veness, Marc G. Belle-
mare, Alex Graves, Martin A. Riedmiller, Andreas Fid-
jeland, Georg Ostrovski, Stig Petersen, Charles Beattie,
Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan
Kumaran, Daan Wierstra, Shane Legg, and Demis Has-
sabis. Human-level control through deep reinforcement
learning. Nat., 518(7540):529–533, 2015.

[Nadjahi et al., 2019] Kimia Nadjahi, Romain Laroche, and
Rémi Tachet des Combes. Safe policy improvement with
soft baseline bootstrapping. In ECML/PKDD (3), pages
53–68. Springer, 2019.

[Petrik et al., 2016] Marek Petrik, Mohammad
Ghavamzadeh, and Yinlam Chow. Safe policy im-
provement by minimizing robust baseline regret. In NIPS,
pages 2298–2306. Curran Associates, Inc., 2016.

[Puterman, 1994] Martin L. Puterman. Markov Decision
Processes: Discrete Stochastic Dynamic Programming.
Wiley Series in Probability and Statistics. Wiley, 1994.

[Ramakrishnan et al., 2020] Ramya Ramakrishnan, Ece Ka-
mar, Debadeepta Dey, Eric Horvitz, and Julie Shah. Blind
spot detection for safe sim-to-real transfer. J. Artif. Intell.
Res., 67:191–234, 2020.

[Rigter et al., 2022] Marc Rigter, Bruno Lacerda, and Nick
Hawes. RAMBO-RL: Robust adversarial model-based of-
fline reinforcement learning. In NeurIPS, pages 16082–
16097. Curran Associates, Inc., 2022.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

4414

https://perspicuous-computing.science

[Rockafellar and Uryasev, 2000] R Tyrrell Rockafellar and
Stanislav Uryasev. Optimization of conditional value-at-
risk. Journal of risk, 2:21–42, 2000.

[Satija et al., 2021] Harsh Satija, Philip S. Thomas, Joelle
Pineau, and Romain Laroche. Multi-objective SPIBB: sel-
donian offline policy improvement with safety constraints
in finite MDPs. In NeurIPS, pages 2004–2017, 2021.

[Scholl et al., 2022] Philipp Scholl, Felix Dietrich, Clemens
Otte, and Steffen Udluft. Safe policy improvement ap-
proaches on discrete Markov decision processes. In
ICAART (2), pages 142–151. SCITEPRESS, 2022.

[Silver et al., 2018] David Silver, Thomas Hubert, Julian
Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur
Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran,
Thore Graepel, Timothy Lillicrap, Karen Simonyan, and
Demis Hassabis. A general reinforcement learning algo-
rithm that masters chess, shogi, and Go through self-play.
Science, 362(6419):1140–1144, 2018.

[Simão and Spaan, 2019a] Thiago D. Simão and Matthijs
T. J. Spaan. Safe policy improvement with baseline boot-
strapping in factored environments. In AAAI, pages 4967–
4974. AAAI Press, 2019.

[Simão and Spaan, 2019b] Thiago D. Simão and Matthijs
T. J. Spaan. Structure learning for safe policy improve-
ment. In IJCAI, pages 3453–3459. ijcai.org, 2019.

[Simão et al., 2020] Thiago D. Simão, Romain Laroche, and
Rémi Tachet des Combes. Safe policy improvement with
an estimated baseline policy. In AAMAS, pages 1269–
1277. IFAAMAS, 2020.

[Simão et al., 2023] Thiago D. Simão, Marnix Suilen, and
Nils Jansen. Safe policy improvement for POMDPs via
finite-state controllers. In AAAI. AAAI Press, 2023.

[Smit et al., 2021] Jordi Smit, Canmanie Ponnambalam,
Matthijs T.J. Spaan, and Frans A. Oliehoek. PEBL: Pes-
simistic ensembles for offline deep reinforcement learning.
In IJCAI Workshop on Robust and Reliable Autonomy in
the Wild (R2AW), 2021.

[Spaan, 2012] Matthijs T. J. Spaan. Partially observable
Markov decision processes. In Reinforcement Learning,
volume 12 of Adaptation, Learning, and Optimization,
pages 387–414. Springer, 2012.

[Sutton and Barto, 1998] Richard S. Sutton and Andrew G.
Barto. Reinforcement learning - an introduction. Adaptive
computation and machine learning. MIT Press, 1998.

[Temme, 1992] N.M. Temme. Asymptotic inversion of the
incomplete beta function. Journal of Computational and
Applied Mathematics, 41(1):145–157, 1992.

[Thomas et al., 2015] Philip S. Thomas, Georgios
Theocharous, and Mohammad Ghavamzadeh. High
confidence policy improvement. In ICML, pages
2380–2388. PMLR, 2015.

[Weissman et al., 2003] Tsachy Weissman, Erik Ordentlich,
Gadiel Seroussi, Sergio Verdú, and Marcelo J. Weinberger.
Inequalities for the L1 deviation of the empirical distribu-
tion. Hewlett-Packard Labs, Tech. Rep, 2003.

[Wienhöft et al., 2023] Patrick Wienhöft, Marnix Suilen,
Thiago D. Simão, Clemens Dubslaff, Christel Baier, and
Nils Jansen. More for less: Safe policy improvement
with stronger performance guarantees. arXiv preprint
arXiv:2305.07958, 2023.

[Yu et al., 2020] Tianhe Yu, Garrett Thomas, Lantao Yu, Ste-
fano Ermon, James Y Zou, Sergey Levine, Chelsea Finn,
and Tengyu Ma. MOPO: Model-based offline policy opti-
mization. In NeuRIPS, pages 14129–14142. Curran Asso-
ciates, Inc., 2020.

[Yu et al., 2021] Tianhe Yu, Aviral Kumar, Rafael Rafailov,
Aravind Rajeswaran, Sergey Levine, and Chelsea Finn.
COMBO: conservative offline model-based policy opti-
mization. In NeurIPS, pages 28954–28967. Curran As-
sociates, Inc., 2021.

[Zhao et al., 2020] Wenshuai Zhao, Jorge Peña Queralta,
and Tomi Westerlund. Sim-to-real transfer in deep rein-
forcement learning for robotics: a survey. In SSCI, pages
737–744. IEEE, 2020.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

4415

	Introduction
	Contributions

	Preliminaries
	Safe Policy Improvement
	Maximum Likelihood Estimation
	SPI with Baseline Bootstrapping

	Tighter Improvement Bounds for SPI
	From MDP to Two-Successor MDP
	Data-set Transformation

	SPI in Two-Successor MDPs
	Uncertainty in Two-Successor MDPs

	Implementation and Evaluation
	Example Comparison of Different N
	Evaluation in SPIBB

	Related Work
	Conclusion

